

MANUEL DE L'UTILISATEUR

LOGICIEL LNE-RegPoly 1.0

décembre 2015

VERSION 1.0

Laboratoire national de métrologie et d'essais

Établissement public à caractère industriel et commercial • Siège social : 1, rue Gaston Boissier - 75724 Paris Cedex 15 • Tél. : 01 40 43 37 00 Fax : 01 40 43 37 37 • E-mail : info@lne.fr • Internet : www.lne.fr • Siret : 313 320 244 00012 • NAF : 7120B • TVA : FR 92 313 320 244 CRCA PARIS C.AFF.RENNES - IBAN : FR76 1820 6002 8058 3819 5600 104 - BIC : AGRIFRPP882

Avant-propos

LNE-RegPoly estime un polynôme $y = b_0 b + x_0 b_1 + x_2 b_2 \cdots b_k x^k$ avec n couples de points (x_i, y_i) en tenant compte des variances et des covariances associées à ces points. A l'étape suivante, LNE-RegPoly utilise ce polynôme pour déduire la valeur de x_0 connaissant y_0 (ou vice versa). Les incertitudes des points x_i et y_i sont propagées aux coefficients du polynôme et aux valeurs prévues.

Logiciel dédié à la fonction d'étalonnage d'un instrument de mesure, LNE-RegPoly permet :

- d'évaluer une fonction ou une correction d'étalonnage
- de déterminer le résultat de mesure correspondant à une indication
- de modéliser la relation entre deux instruments de mesure

Vous choisissez comment affecter les valeurs-étalons et les indications dans les variables x et y (sens de modélisation). Le calcul du résultat de mesure pouvant être réalisé en mode direct $y_0 = f(x_0)$ ou inverse $x_0 = f^{-1}(y_0)$.

Plus généralement, LNE-RegPoly vous permet :

- d'estimer une fonction reliant deux variables qui sont entachées d'incertitude
- de calculer des prévisions par calcul direct ou inverse

LNE-RegPoly propose trois méthodes d'estimation type régression pondérée : WLS (moindres carrés pondérés), GLS_simples (moindres carrés généralisés) et GLS_GGMR (moindres carrés généralisés avec incertitude sur x). Il intègre également la méthode de base des OLS (moindres carrés ordinaires). Le choix d'une méthode dépend de la structure des incertitudes associées aux valeurs x_i et y_i.

LNE-RegPoly comporte 2 fenêtres (fenêtre d'accueil, fenêtre de calcul). La navigation dans le logiciel s'effectue via des boutons de commande ou des listes de choix. Les entrées et les sorties du logiciel se font directement dans l'interface ou par l'intermédiaire de fichiers Excel.

TABLE DES MATIERES

1	INFORMATIONS GENERALES	4
2	FENETRE D'ACCUEIL	4
3	FENETRE DE CALCUL	5
	3.1 - Données étalonnage (Panneau I)	6
	3.1.1 - Structure des données	6
	3.1.2 - Fichier et feuilles des données	6
	3.1.3 - Actions	7
	3.2 - Degré du polynôme (Panneau II)	9
	3.3 - Méthode d'estimation (Panneau III)	10
	3.3.1 – Caractéristiques des méthodes programmées dans le logiciel	10
	3.3.2 - Actions	10
	3.4 - Estimations (panneau IV)	11
	3.5 - Previsions (Panneau V)	12
	3.5.1 – Predicteurs x_0 et y_0	13
	3.5.2 – Calcul des previsions	14
4	ENREGISTRER LES RESULTATS DANS UN FICHIER EXCEL	16
	4.1 - Généralités	16
	4.2 - Fichier de sauvegarde des résultats (de l'estimation)	16
	4.3 - Fichier des prévisions	18
5	AUTRES ACTIONS	21
6	EXEMPLE	21
Ū	6.1 - Fichier des données d'entrée	21
	6.2 - Polynôme estimé	22
	6.3 - Prévisions	23
	6.4 - Fichiers de sauvegarde Excel	24
7	NOTATIONS UTILISEES	24
	7.1 - Variable x	24
	7.2 - Variable y	25
	7.3 - Polynôme y = $f(x)$	25
	7.4 - Prévisions	25
8	QUELQUES FORMULES DE CALCUL	26
	8.1 - OLS (Moindres carrés ordinaires)	26
	8.2 - WLS (Moindres carrés pondérés)	26
	8.3 - GLS_simples (Moindres carrés généralisés)	27
	8.4 - GLS_GGMR (Moindres carrés généralisés avec incertitude sur x)	27
	8.5 - Prévision de y ₀	28
	8.6 - Prévision de x ₀	28
9	BIBLIOGRAPHIE	29

1 INFORMATIONS GENERALES

- LNE-RegPoly est un programme exécutable développé sous le système d'exploitation Microsoft[®] Windows, avec la version R2013a (8.1) de MATLAB[®] en 32 bits.
 Afin d'utiliser LNE-RegPoly, il est nécessaire de télécharger et d'installer le composant MATLAB Compiler Runtime (MCR) correspondant à la version de développement, en l'occurrence le MCR_R2013a_win32_installer.exe disponible à l'adresse : http://www.mathworks.fr/products/compiler/mcr/
- LNE-RegPoly est disponible sur le site web <u>www.lne.fr/logiciel-regpoly</u>. Le dossier à télécharger comporte plusieurs fichiers dont l'exécutable, des fichiers Excel d'exemple, ce manuel utilisateur et la licence.
- <u>Licence</u> : LNE-RegPoly est un gratuitiel. Il est distribué gratuitement avec une licence qui précise les conditions relatives à son utilisation. Le texte de la licence est disponible sur le site de téléchargement du logiciel.
- <u>Installation</u> : lorsque le dossier est téléchargé et le MCR installés, un double-clic sur le fichier Lancement_LNE_RegPoly.bat lance l'application. Il est également possible de lancer directement le fichier LNE-Regpoly.exe.
- <u>Support technique</u>: l'adresse <u>infomathstat@lne.fr</u> est à votre disposition pour toute remarque concernant l'installation ou l'utilisation du logiciel.

LNE-RegPoly : A	: Accueil	
		RegPoly
		VERSION 1.0
	Notice No. Optimize for family 2: 0.5 simpler 2.500% 60 2.700% 60 2.800% 60 2.000% 60	Manuel Utilisateur
	Note Opened Opened <td>Exemple</td>	Exemple
		Quitter
	Test de 2016 des 10.000 Kild - 14.553 la stadéla euro is totrá Rú des	
	Providen (V) Dename of 1 Control Call and all Call Call Call Call Call Call Call	Fenêtre de calcul
	Trainartit (WWW I WWW	
Ce logiciel e utilisation.	rest un gratuitiei developpe par le Laboratoire national de metrologie et d'essais. Il est distribué gratuitement et accompagné d'une licence mentionnant les n. Le LNE décline toute responsabilité quant à son utilisation par d'autres parties et ne donne aucune garantie, expresse ou implicite quant à sa qualité, sa caractéristiques. Copyright © 2015 Logiciel LNE-ReqPoly 1.0 (décembre 2015). Tous droits réservés.	a fiabilité ou toutes autres

2 FENETRE D'ACCUEIL

Fig. 1 – Fenêtre d'accueil du logiciel

Cette fenêtre apparaît au démarrage du logiciel. Elle affiche la version et le Copyright du logiciel.

Elle comporte quatre boutons actifs que l'on actionne par pointer + clic gauche de la souris :

- Manuel Utilisateur : pour accéder à ce manuel
- Exemple : pour accéder à l'exemple du paragraphe 7
- Fenêtre de calcul : pour accéder à la fenêtre de calcul de LNE-RegPoly
- Quitter : pour sortir du logiciel

3 FENETRE DE CALCUL

🚺 LNE-RegPoly : Estimation + Prévision				
I - Données étalonnage Données x, y Fichier des données Nb points X Afficher	y y y y y y y y y y y y y y			
Coefficiente estimés	Graphique des données			
Coefficients estimés Matrice de variances-covariances cov x 1 b u(b) abs(b) / u(b) b0 b1 b2 b3 0.9 b1 b2 b3 0 0 0.8 0.8 0.7 b2 b3 0 0 0 0 0 0.6 0.6 b2 0 0 0 0 0 0 0.6 0.6 b5 0 0 0 0 0 0 0.3 0.4 Test de validation globale Résidus Afficher x 0.2 0.2 0.2				
	Sauvegarder résultats			
V- Prévisions ? Sens direct : x0 → Prév y0 P Choix valeurs x0 ? Fichier des données x0 4 Afflicher x0 Calculer	kv y0 u(Prév y0) Sens inverse : y0 → Prév x0 Choix valeurs y0 ~ Fichier des données y0 Afficher y0 Calculer Fichier des prévisions Prév x0 Calculer Fichier des prévisions Prév x0 Fichier des prévisions Prév x0			

Fig. 2 – Fenêtre de calcul du logiciel

Elle regroupe l'ensemble des opérations réalisées avec le logiciel comme fournir les données d'entrée, exécuter les calculs, afficher et sauvegarder les résultats.

La navigation dans cette fenêtre s'effectue en suivant 5 étapes matérialisées par les panneaux numérotés de l à V. L'utilisateur clique sur un bouton ou sélection ne une option dans un "Menu déroulant". Lorsque l'élément (bouton ou menu) est actif, il est affiché en blanc, sinon il est en bleu ou en gris. Les noms de fichier sont inscrits sur un fond vert.

Ces étapes sont décrites dans les paragraphes suivants.

Les boutons annexes (Reset, Fenêtre Accueil, ..) sont abordés au paragraphe 5.

3.1 - Données étalonnage (Panneau I)

Cette 1^{re} étape consiste à indiquer à LNE-RegPoly les couples de points (x_i, y_i) sur lesquels est ajusté le polynôme y = f(x).

3.1.1 - Structure des données

Les données sont les valeurs-étalons, les indications et les incertitudes types associées. Lorsque les valeurs sont corrélées, la matrice de <u>variances-covariances</u> correspondante est ajoutée.

LNE-RegPoly utilise deux types de variable :

- avec incertitude (les valeurs de la variable sont connues avec une incertitude)
- sans incertitude (les valeurs de la variable sont connues sans incertitude)

Le logiciel considère comme :

- nul, tout écart type négatif ou incorrect
- sans incertitude, une variable dont au moins un des écarts types est nul
- sans covariance, une variable qui a des écarts types nuls
- non corrélées, les valeurs-étalons et les indications.

Le cas des répétitions de y associées à la même valeur de x est possible lorsque la variable x est sans incertitude.

Le sens de modélisation est choisi par l'utilisateur qui peut estimer la fonction indication = f(valeurétalon) ou valeur-étalon= f(indication). LNE-RegPoly affecte les valeurs dans les séries x et y ; il génère automatiquement les termes x^k du polynôme de degré k. Ces termes sont supposés non corrélés.

3.1.2 - Fichier et feuilles des données

Les données figurent à des emplacements fixes dans des feuilles Excel regroupées dans le même fichier. Un fichier SPECIMEN, réutilisable, est fourni avec le logiciel (voir l'exemple au paragraphe 6).

• Feuille "Etalon_Instrument"

<u>Cellules M1,M2</u> : nombre n de valeurs-étalons, d'indications. L'unicité de n est testée dans la feuille Excel.

<u>Cellules B5,C5 et E5,F5</u> : nom de chaque variable, limité de préférence à 20 caractères. En l'absence de nom, LNE- RegPoly nomme "Etalon" et "Instrument" les séries.

<u>Plage de cellules B6:C(6 + n -1)</u> : les couples (valeur-étalon_i,indication_i) sur 2 colonnes et n lignes. Les séries sont ordonnées dans l'ordre croissant des valeurs figurant les x_i . Le nombre maximal de points testé est n = 1000.

<u>Plage de cellules E6:F(6 + n - 1)</u> : les incertitudes types associées aux couples (valeurétalon_i, indication_i) sur 2 colonnes et n lignes. Lorsqu'une variable est sans incertitude, la colonne associée comporte des "0".

<u>Cellule K5</u> : sens de modélisation indiqué comme

- "Etalon" : les valeurs de la colonne "Etalon" forment la série x
- "Instrument" : les valeurs de la colonne "Instrument" forment la série x

Les valeurs de l'autre colonne forment la série y.

• Feuille "VCOV_Etalon" (facultative)

Elle contient la matrice de variances-covariances des valeurs-étalons lorsque celles-ci sont corrélées. Cette matrice comprend n variances dans la diagonale principale et (n² - n) covariances disposées de manière symétrique de part et d'autre de cette diagonale.

Commençant en <u>cellule B6</u>, elle occupe une plage de (n x n) cellules. Par exemple, la matrice correspondant à n = 10 points est dans la plage B6:K15.

• Feuille "VCOV_Instrument" (facultative)

Matrice de variances-covariances des indications de l'instrument lorsque celles-ci sont corrélées. La structure est identique à celle de la feuille "VCOV_Etalon".

Des éléments du fichier de données sont rappelés dans le bouton d'aide du panneau : Aide sur les données d'entrée X_Y

	CLIQUER SUR LE BOUTON "Données xy" POUR SELECTIONNER LE FICHER DE DONNEES, Il comparte les feuilles suivantes :
I - Données étalonnage Ponnées x,y Fichier des données x,y	Etalon_Instrument : valeurs-étalons (colonne B), indications (colonne C), sens de modélisation VCDV_Etalon (facultative) : matrice de variances-covariances nommée
Nb points X Y	Mail.cau VEDV_Instrument (facultative) : matrice de variances-covariances nommée Matinstrument
Afficher	Plus d'information, consulter un extrait du Manuel Utilisateur ?

Fig. 3 – Panneau "Données étalonnage"

Fig. 3 bis – Bouton d'aide

• Fichier de données

le logiciel teste la conformité du fichier en vérifiant la présence de la feuille "Etalon_Instrument"
le cas échéant, il lit les feuilles "VCOV_Etalon" et "VCOV_Instrument"

- l'ordre des feuilles dans le fichier n'a pas d'importance. Il est possible de regrouper dans un seul fichier toutes les feuilles Excel utilisées au cours d'une procédure d'estimation

- le nom du fichier est limité de préférence à 25 caractères

En cas d'anomalie, LNE-RegPoly n'enregistre pas les données.

3.1.3 - Actions

Cliquer sur le bouton Données x,y puis indiquer l'emplacement et le nom du fichier dans la fenêtre correspondante (Fig. 3 ter). Le répertoire proposé est celui dans lequel est enregistré le logiciel.

Solution of the second	egpoly à tester 🔸 Exemples		ercher dans : Exemples	,
rganiser 🔻 Nouveau dossier			!≡ ▼ 🔳	?
💹 Emplacements récents	^ Nom	Modifié le	Туре	Tail
🗼 Téléchargements	BenzèneC2015inv.xlsx	12/11/2015 18:33	Feuille de calcul	
	BenzèneC2015invcovmanuel.xlsx	12/11/2015 18:34	Feuille de calcul	
Bureau	CalorimètreRFM2015.xlsx	06/11/2015 14:51	Feuille de calcul	
Bibliothéques	Couplemètre2.xlsx	06/11/2015 14:51	Feuille de calcul	
Yardin Catherine	Couplemètre3.xlsx	02/11/2015 12:02	Feuille de calcul	
Ordinateur	CouPrevisionX0.xlsx	16/10/2015 17:19	Feuille de calcul	
Windows/_OS (C:)	CouPrvX0.xlsx	16/10/2015 17:19	Feuille de calcul	
Eccteur DVD RW (D:)	NP cov uy - ISO 2015.xls	03/11/2015 18:15	Feuille Microsoft E	
GEC_DOCUMENTS (\\TFILE7) (G:)	NP equal uy - ISO 2015.xls	03/11/2015 18:11	Feuille Microsoft E	
FORMATIO (\\PFILE2) (I:)	🕙 NP unequal uy - ISO 2015.xls	03/11/2015 18:12	Feuille Microsoft E	
LANGUAGE (\\TFILE2) (L:)	🗐 NP ux uy GDR - ISO 2015.xls	03/11/2015 18:18	Feuille Microsoft E	
LINE (\\PFILES) (M:)	🕙 NP ux uy GGMR - ISO 2015.xls	03/11/2015 18:19	Feuille Microsoft E	
SEC831 (\\TEILES) (IV.)				
Elenovo Recovery (O:)				
	+ {	III		
Nom du fichier :			*.xlsx)	-
				_

Fig. 3 ter – Fenêtre de sélection du fichier Excel

A l'issue de la lecture et de la vérification des données, LNE-RegPoly :

- affecte les valeurs Etalon/Instrument dans les séries x et y

 - complète le panneau I : nom, structure d'incertitude de chaque variable, nombre de couples (x_i,y_i) ("Nb points")

- trace le graphe de la variable y en fonction de la variable x

Fig. 4 - Fenêtre de calcul après le chargement des données d'entrée

Cliquer sur le bouton Afficher rendu actif (couleur blanche) pour visualiser les valeurs et les incertitudes types des variables x et y (les covariances ne sont pas affichées).

📕 Do	onnées X-Y			L
	Aire	u(Aire)	Masse	u(Masse)
1	4.9163e+05	2.0661e+03	300.2603	5.4890
2	4.8684e+05	2.0459e+03	300.1774	5.4875
3	4.9128e+05	2.0646e+03	300.1878	5.4877
4	4.9148e+05	2.0654e+03	300.1048	5.4862
5	4.9136e+05	2.0649e+03	300.2085	5.4881
6	6.4863e+05	2.4523e+03	399.3863	7.2767
7	6.5378e+05	2.4717e+03	399.3759	7.2765
8	6.5277e+05	2.4679e+03	399.3966	7.2769
9	6.5375e+05	2.4716e+03	399.3241	7.2756
10	6.4942e+05	2.4552e+03	399.3241	7.2756
11	8.1140e+05	4.5444e+03	500.5963	9.1063
12	8.1817e+05	4.5823e+03	501.6540	9.1254
13	8.2457e+05	4.6182e+03	500.5341	9.1051
14	8.1378e+05	4.5577e+03	500.5860	9.1061
15	8.1929e+05	4.5886e+03	500.5030	9.1046
16	8.1720e+05	4.5769e+03	500.6171	9.1066

Fig. 5 - Affichage des données d'entrée

3.2 - Degré du polynôme (Panneau II)

La 2^e étape consiste à choisir le degré k du polynôme. LNE-RegPoly estime un polynôme avec le terme constant b_0 :

 $y = b b + x b + x .^{2} + . b + x f \neq x$

Le degré k du polynôme varie de 1 à 6. En pratique, la valeur maximale de k dépend du nombre n de données : kmax = min {n-2, 6}.

. <u>Explication</u> : 1 point est nécessaire pour estimer le terme constant b_0 et au moins 1 point supplémentaire est requis pour calculer les écarts entre les points et le polynôme. Ainsi, il reste (n-2) points pour estimer les k coefficients (b_1 , ..., b_k) du polynôme.

<u>ex</u> : un polynôme de degré k = 2 comportant (k + 1) = 3 coefficients à estimer, au minimum n = 4 points sont requis.

Le polynôme est d'autant mieux estimé que le nombre n est élevé ; il est recommandé de limiter, quand cela est possible, le degré k du polynôme.

Le bouton d'aide ? résume ces informations sur la valeur de kmax (Fig. 6).

🛃 Aide : degré du polynôme 🕒 😐 💌 🌉					
Le degré du polynôme est limité à k = 6. Ainsi : kmin = 1 kmax = min {6 , Nb points - 2}					

Fig. 6 – Aide sur le degré du polynôme

Г	_ II - Degré du polynôme _						
	1	-	?				
	Choix k (1-6)						
_	1		néthode-				
	2		Valoure				
	3		certitude va				
	4						
	_ 5						
	6						

Fig. 7 – Liste de sélection du degré

. <u>Action</u> : sélectionner un nombre dans la liste déroulante du panneau (Fig. 7). Si ce degré n'est pas adapté, un message erreur s'affiche et le nombre n'est pas validé.

3.3 - Méthode d'estimation (Panneau III)

La 3 ^e étape porte sur le choix d'une méthode d'estimation. Pour tenir compte de la variation des incertitudes dans le domaine d'étalonnage et des corrélations, LNE-RegPoly propose des méthodes type moindres carrés pondérés. Suivant un ordre de complexité croissant, il s'agit des WLS, des GLS_simples et des GLS_GGMR.

La méthode des OLS, plus simple et moins adaptée aux données de l'étalonnage, est également présente.

Nous rappelons ci-dessous les principales caractéristiques de chaque méthode. Des compléments mathématiques sont donnés au paragraphe 8.

Thèmes	OLS	WLS	GLS_simples	GLS_GGMR
Hypothèses				
valeurs x	sans incertitude	sans incertitude	sans incertitude	incertitude variable corrélation
valeurs y	incertitude constante sans corrélation	incertitude variable et connue sans corrélation	incertitude variable et connue corrélation	incertitude variable et connue corrélation
écarts considérés	entre les valeurs y et le modèle	entre les valeurs y et le modèle	entre les valeurs y et le modèle	entre les valeurs x, y et le modèle
Paramètres estimés				
coefficients	$b_0, b_1,, b_k$ $u(b_0), u(b_1),, u(b_k)$ $u(b_0, b_1),, u(b_0, b_k)$	$b_0, b_1,, b_k$ $u(b_0), u(b_1),, u(b_k)$ $u(b_0, b_1),, u(b_0, b_k)$	b_0, b_1, \dots, b_k $u(b_0), u(b_1), ., u(b_k)$ $u(b_0, b_1), ., u(b_0, b_k)$	$b_0, b_1,, b_k$ $u(b_0), u(b_1), ., u(b_k)$ $u(b_0, b_1), ., u(b_0, b_k)$
incertitude type des valeurs y	S _{y_OLS}	sans objet	sans objet	sans objet
valeurs des x	sans objet	sans objet	sans objet	x et u(x)
Validation				
test global	Test de Fisher	Test du Khi2	Test du Khi2	Test du Khi2
résidus	Résidus	Résidus	Résidus	Résidus
	Résidus studentisés	Résidus pondérés	Résidus pondérés	Résidus pondérés
coefficients	Test de Student	Test de Student	Test de Student	Test de Student

3.3.1 – Caractéristiques des méthodes programmées dans le logiciel

Fig. 8 – Méthodes d'estimation

Le test de Fisher est réalisé tant que le nombre de degrés de liberté associé à $S_{y_{OLS}}$ ne dépasse pas ddlmax = 500. Le test du khi2 est réalisé tant que le nombre de degrés de liberté du khi2 ne dépasse pas ddlmax = 500.

3.3.2 - Actions

- Sélectionner une méthode, en cliquant sur son nom, dans la liste déroulante du panneau. Les

« Hypothèses de la méthode » s'affichent dans le cadre dédié.

- Lorsque le degré du polynôme et la méthode sont correctement renseignés, le bouton <u>Calculer</u> devient actif (fond blanc).

- Cliquer sur le bouton Calculer pour lancer les calculs. Les résultats s'affichent dans le panneau "IV – Estimations"

Il est possible de modifier la méthode sélectionnée, pour afficher ses hypothèses, ou le degré du polynôme. Cela ne change pas les résultats tant que vous n'avez pas cliqué sur le bouton Calculer.

3.4 - Estimations (panneau IV)

La 4^e étape consiste à calculer, analyser et valider le polynôme estimé.

A l'issue du calcul, LNE-RegPoly affiche les résultats suivants :

- . valeur et incertitude type des coefficients (b_0 , b_1 , .. et $u(b_0)$, $u(b_1)$, ..)
- . matrice de variances-covariances des coefficients (cov_b)
- . nom du test de validation globale et conclusion associée

. graphique du polynôme estimé avec son intervalle d'incertitude (issu de l'incertitude des coefficients)

Et selon la méthode sélectionnée :

- . écart type s et valeur de la statistique de Fisher (OLS)
- . Ratio de Birge et valeur de la statistique du Khi2 (autres méthodes)

. estimation des valeurs x_i (GLS_GGMR). Cliquer sur <u>Afficher x</u> pour visualiser les valeurs et les incertitudes types associées

. nom de la méthode utilisée indiquée dans le coin inférieur gauche du panneau.

Fig. 9 - Résultats de l'estimation GLS_GGMR

- <u>les résidus</u> : LNE-RegPoly calcule les résidus du modèle et les résidus studentisés (méthode OLS) ou pondérés (autres méthodes). Cliquer sur le bouton Résidus pour afficher :

- le graphe des résidus studentisés ou pondérés en fonction de x
- . le tableau des résidus et des résidus studentisés ou pondérés

Fig. 10 – Résidus et graphe des résidus pondérés

L'examen des résultats des tests de validation globale et partielle, des graphes des résidus permet d'accepter ou de rejeter le modèle. Tant que le polynôme estimé n'est pas validé, il est inutile de passer à l'étape suivante.

3.5 - Prévisions (Panneau V)

La 5^e étape consiste à utiliser le polynôme estimé pour calculer une nouvelle valeur de :

- la variable y : Prév $y_0 = f(x_0)$ associée à la valeur connue x_0
- la variable x : Prév $x_0 = f^{-1}(y_0)$ associée à la valeur connue y_0

Les valeurs connues x_0 et y_0 en entrée du calcul sont appelées des prédicteurs et les valeurs calculées Prév x_0 et Prév y_0 des prévisions.

. <u>Prédicteurs</u> (x_0 ou y_0) : il peut s'agir des données initiales (x_i , y_i) ou d'autres valeurs enregistrées dans une feuille Excel. Le nombre maximal de prédicteurs testé est de 1000.

. <u>Prévisions</u> (Prév x_0 et Prév y_0) : le calcul est effectué de manière directe dans le cas Prév y_0 . Dans le cas de Prév x_0 , le polynôme est inversé en y_0 avec la possibilité d'obtenir plusieurs solutions. L'incertitude associée à une prévision est obtenue en propageant l'incertitude des coefficients du polynôme et lorsqu'elle est différente de zéro, l'incertitude du prédicteur.

. <u>Extrapolation</u> : l'extrapolation de la fonction d'étalonnage en dehors du domaine défini par les valeurs (x_i,y_i) est déconseillée. Néanmoins, elle est autorisée dans LNE-RegPoly parce que :

- les limites pratiques du domaine peuvent, en raison de contraintes techniques, différer de limites théorique visées
- les valeurs extrêmes du polynôme estimé se situent généralement hors de ces limites pratiques (hormis le cas de la droite)

LNE-RegPoly utilise la procédure d'extrapolation présentée dans le tableau suivant.

. Le calcul de prévision est toujours précédé du calcul d'estimation du polynôme afin de charger en mémoire les coefficients du polynôme.

	Prédicteur	Prévision
Valeur x	10%	20%
Valeur y	20%	30%
Action	Au-delà, LNE-RegPoly ne	Au-delà, LNE-RegPoly affiche
	considère pas les valeurs	un message avertissant
		l'utilisateur

Fig. 11 – Gestion des valeurs extrapolées dans LNE-RegPoly

Les prévisions sont calculées dans deux sous-panneaux différents (Prév x₀ et Prév y₀) en suivant le même principe. Il est explicité ci-dessous.

$3.5.1 - Prédicteurs x_0 et y_0$

. <u>Données initiales</u> : dans ce cas, choisir ("Données x") ou ("Données y ") pour reprendre les données x_i ou y_i.

. <u>Nouvelles valeurs</u> : elles sont lues dans une feuille Excel nommée "Prévision" qui est intégrée au fichier des données initiales ("Fichier données x,y") ou un autre fichier ("Autre fichier"). La structure de la feuille est la suivante :

- <u>cellule M1</u> : nb valeurs-étalons et/ou <u>cellule M2</u> : nb indications
- <u>plage de cellules B6:B et C6:C</u> : valeurs-étalons avec leurs incertitudes types
- plage de cellules E6:E et D6:D : indications avec leurs incertitudes types
- cellule K5 : rappel du sens de la modélisation ("Etalon" ou "Instrument")

remarques :

- une valeur-étalon ou une indication sans incertitude est codée par "0" pour l'incertitude type
- une seule série, les valeurs-étalons ou les indications, peut être renseignée
- le sens de modélisation détermine la série lue et chargée comme prédicteurs par le logiciel

. <u>Actions</u> : sélectionner la provenance des données dans le menu déroulant. Dans le cas "Autre fichier", le logiciel ouvre une fenêtre pour vous permettre d'indiquer l'emplacement et le nom de ce fichier.

V - Prévisions?		V - Prévisions?	
Sens direct : x0 -> Prév v0	Prév y0 u(Prév y0)	Sens direct : x0 -> Prév y0	Prév y0 u(Prév y0)
· · · · · · · · · · · · · · · · · · ·	1		1
Choix valeurs x0 -	2	Choix valeurs x0 🔻	2
Choix valeurs x0	3	feuille · Prévision	3
Données x	4	iculie i revision	4
Fichier données x,y	5		5
Affic Autre fichier	4	Afficher x0 Calculer	4 III +

Fig. 12 – Panneau Prévisions avant et après le choix des prédicteurs (de la feuille Prévision)

Lorsque les valeurs sont valides, LNE-RegPoly affiche la provenance des données ("Données x" ou " Données y", "feuille : Prévision" (du fichier des données initiales), nom de l'autre fichier sur fond vert). Les boutons Afficher... et Calculer situés en dessous deviennent actifs (couleur blanche).

Un clic sur Afficher x0 par exemple, ouvre les deux fenêtres suivantes :

1	📣 Do	onnées x		23		🛃 Pr	édicteurs x0		x
		Aire- x	u(x)				Aire- x0	u(x0)	
1	1	4.9163e+05	2.0661e+03		cova	1	750000	0	
	2	4.8684e+05	2.0459e+03		b	2	800000	0	
5	3	4.9128e+05	2.0646e+03			3	910000	0	
2	4	4.9148e+05	2.0654e+03			4	1000000	0	
E	5	4.9136e+05	2.0649e+03	=		5	1100000	0	
L	6	6.4863e+05	2.4523e+03						
Ľ	7	6.5378e+05	2.4717e+03						
Ŀ	8	6.5277e+05	2.4679e+03						
ł	9	6.5375e+05	2.4716e+03						
L	10	6.4942e+05	2.4552e+03						
1	11	8.1140e+05	4.5444e+03						
0	12	8.1817e+05	4.5823e+03						
1	13	8.2457e+05	4.6182e+03						
	14	8.1378e+05	4.5577e+03	Ŧ	mod				

Fig. 13 – Prédicteurs x₀ et leurs incertitudes types (avec rappel des données d'entrée)

Pour faciliter le contrôle des données, le logiciel affiche simultanément les données initiales et les prédicteurs.

. <u>Vérification des données</u> : dans le cas de données à lire dans la feuille "Prévision", LNE- RegPoly contrôle

a) la présence de la feuille "Prévision" et des valeurs des prédicteurs dans le fichier indiqué b) les contraintes sur les prédicteurs évoquées ci-dessus

c) la cohérence entre le sens de modélisation indiqué ici et celui utilisé lors de l'estimation En cas de non conformité, un message erreur indique la première condition non vérifiée et le bouton Calculer n'est pas actif (couleur bleue) ; idem pour le bouton Afficher... sauf dans le cas de la non conformité b) où il doit être possible de visualiser ces valeurs incorrectes des prédicteurs.

3.5.2 – Calcul des prévisions

3.5.2.1 – prévisions y₀ (sous-panneau « Sens direct : x0-> Prév y0 »)

. <u>Expressions</u> : Prév y_0 est obtenue en évaluant le polynôme f au point x_0 . Son incertitude type correspond à la somme quadratique des incertitudes dues au polynôme (u_f) et au prédicteur x_0 . Il est supposé que ces deux composantes d'incertitude ne sont pas corrélées.

Prév $y_0 = f(x_0)$ et $u (Prév_y y) \neq \dot{y}(y) + \dot{y}(y_0)$

. <u>Actions</u> : cliquer sur le bouton <u>Calculer</u> pour lancer le calcul. En retour, LNE-RegPoly affiche les valeurs Prév y_0 et leur incertitude type u(Prév y_0) dans le tableau dédié.

	V - Prévisions 2				
I					
I	Sens direct : x0 -> Prév y0		Prév y0	u(Prév y0)	Sens inverse : y0 -> Prév x0
I		1	457.6573	8.2709 🔺	
I	Choix valeurs x0 🔻	2	487.9814	8.8157	Choix valeurs y0
I	feuille : Prévision	3	554.6943	10.0171	
I		4	609.2777	11.0025	
I		5	669.9258	12.0991 +	
I	Afficher x0 Calculer		۰ III	4	Afficher y0 Calculer
1					

Fig. 14 – Prévisions Prév y₀

Pour afficher plus distinctement toutes les prévisions, cliquer sur le bouton Editer Prév y0

V - Prévisions 2					_					
					🗖 Dr	édicteurs v0 et	Prévisions vi	1		. 🗆 🛛 🗙
Sens direct : x0 -> Prév y0		Prév y0	u(Prév y0)		<u> </u>	culcteurs xo et	ricvisions y	The second		
	1	457.6573	8.2709 🔺			Aire- x0	u(x0)	MassePrév y0	u(Prév y0)	
Choix valeurs x0 -	2	487.9814	8.8157	Г	1	750000	0	457.6573	8.2709	
for the spatial star	3	554.6943	10.0171		2	800000	0	487.9814	8.8157	
reunie : Prevision	4	609 2777	11 0025		3	910000	0	554.6943	10.0171	
	-	660 0259	12 0001		4	1000000	0	609.2777	11.0025	
	<u> </u>	005.5250	12.0331 +		5	1100000	0	669.9258	12.0991	
Afficher x0 Calculer		•								

Fig. 15 – Affichage des prévisions y₀

3.5.2.2 – prévisions x₀ (sous-panneau « Sens inverse : y0-> Prév x0 »)

Le calcul des prévisions est plus complexe que dans le cas précédent car il nécessite d'inverser le polynôme au point considéré. A l'exception du degré 1, cette inversion est réalisée avec une méthode d'analyse numérique et en l'occurrence LNE-RegPoly utilise le solveur de Matlab. Il n'existe pas d'expression analytique pour définir les solutions multiples x₀ calculées.

. Valeur : le polynôme estimé est inversé à la valeur yo considérée

 $x_0 = f^{-1}(y_0)$ où f est le polynôme estimé

Il s'agit d'une évaluation inverse (appelée « calibration » dans certains ouvrages).

Cette évaluation donne au maximum k solutions en fonction du degré k du polynôme. A l'exception du degré 1, où la solution est unique, le logiciel :

- note « complexe » les solutions qui sont des nombres complexes

- affiche et classe dans l'ordre décroissant les solutions réelles

. <u>Incertitude type</u> : elle est obtenue en propageant l'incertitude des coefficients et l'incertitude de la valeur y_0 . A l'exception du degré1, l'incertitude associée aux solutions réelles est calculée avec une formule approchée. Les solutions complexes n'ont pas d'incertitude (notée "0").

. <u>Actions</u> : cliquer sur le bouton <u>Calculer</u> pour lancer le calcul. En retour, le logiciel affiche en ligne l'ensemble des solutions x_0 correspondant à chacune des valeurs y_0 dans le tableau dédié. Pour afficher plus clairement toutes ces solutions x_0 , cliquer sur le bouton <u>Afficher x0</u> et pour les sauvegarder, sélectionner un fichier dans le menu déroulant <u>Sauvegarder Prév x0</u>.

📣 Po	our chaque vale	ur y0, les prév	isions obtenues	s Prév x0 et le	ur incertitude ty	pe sont affich	iées sur une lig	ine			23	
	Aire - Prév x0,1	u(Prév x0,1)	Aire -Prév x0,2	u(Prév x0,2)	Aire - Prév x0,3	u(Prév x0,3)	Aire - Prév x0,4	u(Prév x0,4)	Aire - Prév x0,5	u(Prév x0,5)	Air	
1	4.9127e+05	1.2885e+04	-3.0876e+05	5.8872e+05	complexe	0	complexe	0)			*
2	4.9113e+05	1.2883e+04	-3.0869e+05	5.8874e+05	complexe	0	complexe	0)			
3	4.9115e+05	1.2883e+04	-3.0870e+05	5.8874e+05	complexe	0	complexe	0				
4	4.9101e+05	1.2880e+04	-3.0864e+05	5.8875e+05	complexe	0	complexe	0	1			Ξ
5	4.9119e+05	1.2883e+04	-3.0872e+05	5.8873e+05	complexe	0	complexe	0				
6	6.5257e+05	1.6617e+04	-3.7604e+05	5.7750e+05	complexe	0	complexe	0)		l	
7	6.5255e+05	1.6617e+04	-3.7603e+05	5.7750e+05	complexe	0	complexe	0				
8	6.5259e+05	1.6617e+04	-3.7604e+05	5.7750e+05	complexe	0	complexe	0)			
9	6.5247e+05	1.6614e+04	-3.7600e+05	5.7751e+05	complexe	0	complexe	0)			
10	6.5247e+05	1.6614e+04	-3.7600e+05	5.7751e+05	complexe	0	complexe	0)			
11	8.1819e+05	2.1422e+04	-4.3094e+05	5.7602e+05	complexe	0	complexe	0				
12	8.1995e+05	2.1475e+04	-4.3146e+05	5.7603e+05	complexe	0	complexe	0	1			_

Fig. 16 – Affichage des solutions x_0 et $u(x_0)$ avec mention du codage utilisé

4 ENREGISTRER LES RESULTATS DANS UN FICHIER EXCEL

4.1 - <u>Généralités</u>

LNE-RegPoly sauvegarde à votre demande, les résultats de l'estimation et les prévisions. Ces données sont inscrites à des emplacements fixes dans des feuilles Excel dédiées.

La sauvegarde est réalisée individuellement pour chaque calcul. LNE-RegPoly vous demande le nom du fichier de sauvegarde puis il copie les résultats dans la feuille appropriée du fichier. Il est possible de réécrire dans une feuille, à la suite des sauvegardes précédentes, même entre deux opérations de fermeture/ouverture du logiciel. Des compteurs gèrent le nombre d'écritures par feuille pour le fichier des résultats et par feuille/méthode pour le fichier des prévisions.

Le fichier destinataire doit être fermé avant d'effectuer l'opération d'écriture. LNE-RegPoly ne gère pas les problèmes qui pourraient survenir lors des échanges avec le logiciel Excel. Néanmoins, l'affichage de l'icône Excel dans la barre des tâches avertit l'utilisateur qu'une de ces opérations est en cours. Il est possible de cliquer sur cet icône en cas d'arrêt de LNE-RegPoly.

L'exemple du paragraphe 6 inclut les deux types de sauvegarde (résultats de l'estimation et prévisions).

4.2 - Fichier de sauvegarde des résultats (de l'estimation)

4.2.1 - Choix du fichier

Trois possibilités sont offertes. Ecrire dans le fichier des données x,y, un fichier déjà existant ou un nouveau fichier qui sera crée par LNE-RegPoly.

	-
Sauvegarder résultats	-
Sauvegarder résultats	
Fichier données x,y	
 Fichier existant 	
Nouveau fichier	
	_
auvegarder résultats 🔻 📪	BenzèneC2015invcovmanuel.xlsx

Fig. 17 - Menu déroulant et inscription du nom du fichier de sauvegarde des résultats

Le choix s'effectue via le menu déroulant présenté Fig. 17. Dans les cas 2 et 3, le logiciel ouvre une nouvelle fenêtre pour vous permettre d'indiquer le nom du fichier de sauvegarde.

Après la sauvegarde, LNE- RegPoly affiche sur fond vert, le nom du fichier à l'emplacement dédié (voir Fig. 17).

4.2.2 – Structure du fichier

Il comporte quatre feuilles, une pour chaque méthode, qui permettent d'enregistrer la plupart des résultats affichés dans le panneau "IV - Estimations ". Ces feuilles sont nommées "OLS", "WLS", "GLS_simples" et "GLS_GGMR".

Des feuilles OLS et GLS_GGMR sont présentées dans les figures suivantes.

Outre les résultats, sont également indiqués :

- l'heure et la date du jour
- le nom du fichier de données initiales
- le nombre d'écritures dans la feuille

1	А	В	С	D	E	F	G	Н	1	J	К	L	М	N	0
1			Estimat	ion du p	olynôm	e par la i	méthode	e OLS					Compteur C	OLS	1
2															
3	date/heure	16-Dec-2015	17:06:02			Nom du fich	ier de donné	es	BenzèneC2	015invcovma	inuel				
4															
5		d° du polyr	nôme	1		Matrice de	variances-co	ovariances							
6			b	u(b)		b0	b1	b2	b3	b4	b5	b6			
7		ь0	4.29714485	1.76340252		3.10958844	-3.5208E-06	#N/A	#N/A	#N/A	#N/A	#N/A			
8		b1	0.00060558	2.0735E-06		-3.5208E-06	4.2993E-12	#N/A	#N/A	#N/A	#N/A	#N/A			
9		b2	#N/A	#N/A		#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A			
10		b3	#N/A	#N/A		#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A			
11		b 4	#N/A	#N/A		#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A			
12		b5	#N/A	#N/A		#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A			
13		b6	#N/A	#N/A		#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A			
14		5	2.4256513												
15		Validation													
16		Fisher	85299.8436												
17		conclusion	le modèle es	st validé avec	le test de Fi	sher									
18	UD NOLS	WLS GLS	GLS_GGMR	Etalon_Instr	ument 🖉 V	/COV_Etalon 🔬	Prévision / \	/alidation 🖉	⁰⊒∕ []∢						

Fig. 18 – Feuille OLS

А	В	С	D	E	F	G	Н	I.	J	К	L	Μ	N	0	
		Estimat	ion du p	olynôm	e par la	méthode	e GLS_G	GMR				Compteur G	GMR	2	
date/heure	16-Dec-2015	17:35:15			Nom du fich	ier de donnée	25	Benzène(20	15invcovmar	uel.					
aute, neure	10 000 2010	11100120						Denterrebeo	201110011101	luci					
	d° du polyr	ôme	1		Matrice de	variances-co	ovariances								
		ь	u(b)		ь0	b1	b2	b3	b4	b5	b6				
	b0	2.79625232	1.45328192		2.11202833	-1.6232E-06	#N/A	#N/A	#N/A	#N/A	#N/A				
	b1	0.00060648	1.1054E-05		-1.6232E-06	1.2219E-10	#N/A	#N/A	#N/A	#N/A	#N/A				
	b2	#N/A	#N/A		#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A				
	b3	#N/A	#N/A		#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A				
	b4	#N/A	#N/A		#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A				
	b5	#N/A	#N/A		#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A				
	b6	#N/A	#N/A		#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A				
	×	490267.345	488829.53	490084.092	490042.079	490132.345	651553.54	653205.976	652906.408	653137.504	651741.526	818121.699	820769.814	820374.615	818
	Validation														
	Khi2	19.3760323		Ratio Birge	0.89851805										
	conclusion	le modèle e	st validé avec	le test du Kh	ni2										
date/heure	16-Dec-2015	17:35:43			Nom du fich	ier de donnée	es	BenzèneC20	15invcovmar	nuel					
		_												ļļ	<u> </u>
	d° du polyr	lôme	2		Matrice de	variances-co	ovariances								
		ь	u(b)		ь0	ь1	b2	b3	b4	b5	b6				
	P0	-7.31607866	6.07006395		36.8456764	-0.00010209	6.4142E-11	#N/A	#N/A	#N/A	#N/A				
	ь1	0.00063536	2.0318E-05		-0.00010209	4.1282E-10	-1.8561E-16	#N/A	#N/A	#N/A	#N/A				
	b2	-1.8766E-11	1.0885E-11		6.4142E-11	-1.8561E-16	1.1847E-22	#N/A	#N/A	#N/A	#N/A				
	b3	#N/A	#N/A		#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A				
	Ь4	#N/A	#N/A		#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A				
	b5	#N/A	#N/A		#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A				
	b6	#N/A	#N/A		#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A				
	x	490837.432	489430.197	490657.066	490614.627	490704.585	650774.304	652406.393	652110.731	652338.129	650959.232	816876.576	819530.76	819133.722	817
	Validation														
	Khi2	16.4102025		Ratio Birge	0.84468164										
	conclusion	le modèle e	st validé avec	le test du Kh	ni2										
	MIS GIS	GLS GGMR	Etalon Inst	rument /V	COV Etalon	Prévision / \	/alidation 🔗		1 4						

Fig. 19 - Fichier "BenzèneC2015invcovmanuel" après plusieurs sauvegardes

4.2.3 - Ecriture des résultats dans le fichier

. Etape 1 : création des 4 feuilles

Dans le cas d'un nouveau fichier, le logiciel crée le fichier avec les 4 feuilles puis le sauvegarde. Lorsque le fichier existe déjà, le logiciel teste la présence de la feuille "OLS". Si cette feuille est présente, le logiciel suppose que le fichier contient déjà les 4 feuilles dédiées. Autrement, il ajoute les 4 feuilles au début du fichier puis il le sauvegarde.

Veillez à utiliser un fichier complet, c'est-à-dire comportant les 4 feuilles "OLS", "WLS", "GLS_simples" et "GLS_GGMR".

. <u>Etape 2</u> : le logiciel écrit les résultats dans la feuille dédiée et incrémente le compteur du nombre d'écritures. Puis il sauvegarde le fichier actualisé.

Il est supposé que le fichier existant est dans le même répertoire que le fichier des données x,y (LNE-RegPoly ne gère pas le répertoire où est stocké le fichier).

4.3 - Fichier des prévisions

4.3.1 – Choix du fichier

Le processus est le même que pour la sauvegarde des résultats :

- 3 choix possibles : fichier des données x,y , fichier déjà existant ou un nouveau fichier
- après la sauvegarde, affichage de la feuille de sauvegarde (dans le fichier des données x,y) ou du nom du fichier dans l'emplacement dédié

Deux menus déroulants sont proposés, un pour chaque type de prévision : "Sauvegarder Prév x0" et "Sauvegarder Prév y0".

4.3.2 – Structure du fichier

Il comporte deux feuilles, une pour chaque type de prévision. Elles sont nommées "Prév_y0" et "Prév_x0".

Dans ces feuilles, des colonnes sont réservées à chacune des méthodes. Comme le nombre de prévisions Prév x_0 associées à une valeur y_0 peut aller jusqu'à 6, un nombre plus important de colonnes est réservé pour chaque méthode.

• Feuille Prév_y0

Les prévisions Prév y₀ et les prédicteurs x₀ sont inscrits en ligne aux emplacements suivants :

colonnes C à F : méthode OLS	cellule F2 : compteur OLS
colonnes H à K : méthode WLS	cellule K2 : compteur WLS
colonnes M à P : méthode GLS	cellule P2 : compteur GLS
colonnes R à U : méthode GLS_GGMR	cellule U2: compteur GLS_GGMR

Pour assurer la traçabilité, LNE-RegPoly enregistre également :

- le nom de la méthode et le degré du polynôme
- la date et l'heure

- le nom du fichier de données x,y utilisé pour estimer le polynôme

- le nom du fichier de données x₀ utilisé pour calculer les prévisions

			Р	révisions de	s valeur	s de y							
	Compteur (DLS	50		Compteur V	/LS	50	Compteur GLS	0		Compteur G	LS_GGMR	16
date/	heure	02-déc-15	14:37:50	date/	heure	02-déc-15	14:45:50			date/	heure	02-déc-15	18:10:27
fichi	erx,y	enzèneC2015	5invcovmanu(fichi	erx,y	enzèneC2015	invcovmanue			fichi	er x,y	enzèneC201	5invcovmanu
fichi	ier x0	enzèneC2015	5invcovmanu(fichi	er x0	enzèneC2015	invcovmanue			fich	ier x0	enzèneC201	5invcovmanu
méthode	OLS	d° poly.	1	méthode	WLS	d° poly.	2			méthode	GLS_GGMR	d° poly.	1
×0	ux0	Prév y0	u(Prév y0)	×0	ux0	Prév y0	u(Prév y0)			×0	ux0	Prév y0	u(Prév y0)
750000	0	458.482196	0.49671577	750000	0	459.409382	2.53627316			750000	0	457.657304	8.27093788
800000	0	488.761199	0.47732585	800000	0	489.776773	2.62088303			800000	0	487.981374	8.81565219
910000	0	555.375007	0.51181703	910000	0	556.237158	2.59164064			910000	0	554.694329	10.0171018
1000000	0	609.877213	0.60601751	1000000	0	610.258058	2.80124136			1000000	0	609.277655	11.0024726
1100000	0	670.43522	0.7522925	1100000	0	669.905735	4.03815585			1100000	0	669.925795	12.099149
date	heure	14-déc-15	18-25-08	/ate/	heure	14-dác-15	10:53:04						
fichi	arvy	Renzène(20	15invcovman	fichi	aryy	Renzène C20	15invcovman						
fichi	erv0	BenzèneC20	15invcovman	fichi	er v0	BenzèneC20	15invcovman						
máthada	015	denaly	2	máthodo	14/1 5	d° noly	2						
methode	025	a poly.	-	methode	1125	u poly.	-						
×0	ux0	Prév y0	u(Prév y0)	×0	ux0	Prév y0	u(Prév y0)						
491627.57	2066.05666	300.998167	1.62891183	491627.57	2066.05666	300.91264	2.71114862						
486837.58	2045.9268	298.039521	1.6333277	486837.58	2045.9268	297.949339	2.76389632						
491277.08	2064.58373	300.781707	1.6292044	491277.08	2064.58373	300.695842	2.71487227						
491483.21	2065.44999	300.909012	1.62903176	491483.21	2065.44999	300.823345	2.71267971						
491362.32	2064.94195	300.834351	1.62913281	491362.32	2064.94195	300.748568	2.71396469						
648632.88	2452.26032	397.513277	1.67386199	648632.88	2452.26032	397.54101	2.62854977						
653781.39	2471.72509	400.662986	1.68581304	653781.39	2471.72509	400.693141	2.65699315						
652774.09	2467.91683	400.046826	1.6834614	652774.09	2467.91683	400.076513	2.65142316						
653748.85	2471.60207	400.643083	1.68573698	653748.85	2471.60207	400.673222	2.6568132						
649421.1	2455.24032	397.99555	1.67568031	649421.1	2455.24032	398.023659	2.63289864						
811399.64	4544.41322	496.621887	2.97197235	811399.64	4544.41322	496.686484	3.91575554						
818168.92	4582.32598	500.722791	2.99560185	818168.92	4582.32598	500.787146	3.93533892						
824574.53	4618.20194	504.601843	3.01788266	824574.53	4618.20194	504.665836	3.9531264						
813777.54	4557.73114	498.062635	2.98028277	813777.54	4557.73114	498.127163	3.92273121						
819287.34	4588.58993	501.400182	2.99949759	819287.34	4588.58993	501.464482	3.93849487						
817204.63	4576.92528	500.138716	2.9922411	817204.63	4576.92528	500.203113	3.93260023						
982351.57	3439.11652	599.675117	2.27392696	982351.57	3439.11652	599.69014	3.48814297						
983871.55	3444.43782	600.586616	2.2770712	983871.55	3444.43782	600.600792	3.49551515						
979058.62	3427.58823	597.70012	2.26714828	979058.62	3427.58823	597.716951	3.47277923						
988175.17	3459.50438	603.166945	2.28602888	988175.17	3459.50438	603.178685	3.51737655						
985732.53	3450.95293	601.70249	2.28093451	985732.53	3450.95293	601.715619	3.50478749						
1141975.56	5556.67336	694.938322	3.6582057	1141975.56	5556.67336	694.825389	6.07030031						

Fig. 20 – Fichier de sauvegarde des prévisions y₀

• Feuille Prév_x0

Pour chaque valeur y_0 , le nombre de prévisions Prév x_0 est au maximum de 6. Les emplacements dédiés aux différentes méthodes sont les suivants :

colonnes C à P : méthode OLS	cellule F2 : compteur OLS
colonnes R à AE : méthode WLS	cellule U2 : compteur WLS
colonnes AG à AT : méthode GLS	cellule AJ2 : compteur GLS
colonnes AV à BI : méthode GLS_GGMR	cellule AY2: compteur GLS_GGMR

Hormis les emplacements, la structure de la feuille est la même que celle de "Prév_y0".

 \triangle

Pour chaque prédicteur y₀, LNE-RegPoly ne sauvegarde que la première solution Prév x₀ et son incertitude type. Il est possible de copier dans les colonnes réservées les autres solutions affichées dans la fenêtre de calcul.

Compteur

Contrairement au fichier des résultats, le compteur indique la ligne d'écriture pour la prochaine sauvegarde.

4.3.3 – Ecriture des prévisions dans le fichier

Etape 1 : création de feuilles

Dans le cas d'un nouveau fichier, le logiciel crée le fichier avec les 2 feuilles "Prév_x0" et "Prév_y0" ; puis, il le sauvegarde.

Dans le cas d'un fichier déjà existant, le logiciel vérifie l'existence de la feuille concernée (par exemple : "Prév_x0" dans le cas de la sauvegarde des prévisions Prév x₀). Lorsqu'elle n'existe pas, le logiciel ajoute cette feuille au début du fichier et effectue une sauvegarde.

<u>Etape 2</u> : écriture des résultats dans la feuille dédiée et mise à jour du compteur indiquant la ligne où commencer la prochaine sauvegarde. Puis sauvegarde du fichier actualisé.

Etape 3 : affichage du nom du support de sauvegarde à l'emplacement dédié :

- cas Fichier données x,y à Feuille : "Prév_x0"
- autres cas à Nom du fichier inscrit sur fond vert

Sens inverse : y0 -> Prév x0		Prév x0,1	u(Prév x0,1)	Prév x0,2	u(Prév x	Sauvegarder prévision	5 ?
	1	3.3367e+07	1.8739e+07	4.9080e+05	1.2017e 🔺		
Choix valeurs v0 -	2	3.3204e+07	1.8738e+07	6.5370e+05	1.6496e	Sauvegarder Prév y0 🔻	Editer Prév y0
	3	3.3040e+07	1.8738e+07	8.1824e+05	2.1101e		
feuille : Prevision	4	3.2873e+07	1.8739e+07	9.8448e+05	2.4637e		
	5	3.2705e+07	1.8741e+07	1.1525e+06	2.9495e 👻	Sauvegarder Prév x0 🔻	Editer Prév x0
Afficher y0 Calculer		∢			F.	cc.xls	

Fig. 21 – I nscription du nom du fichier de sauvegarde des prévisions $x_{\rm 0}$

Il est supposé que le fichier existant est dans le même répertoire que le fichier des données x,y (LNE-RegPoly ne gère pas les répertoires).

5 AUTRES ACTIONS

• <u>Boutons</u>? et ? : boutons d'aide généralement accessibles à tout moment (même sans données chargées dans le logiciel). Ils déclenchent l'affichage d'un message informatif sur le panneau concerné. Le message peut comporter un lien vous permettant d'accéder aux paragraphes de ce manuel (données x,y, méthodes, données x0y0, sauvegarde des résultats et des prévisions).

La couleur verte indique que l'aide concerne la lecture ou l'écriture dans une feuille Excel.

- <u>Bouton Reset</u> : met à zéro l'ensemble des données et des résultats stockés dans les variables du programme lors de la session.
- <u>Bouton Fenêtre Accueil</u> : permet de revenir à la fenêtre d'accueil, sans fermer la fenêtre de calcul.
- <u>Bouton Quitter</u> : déclenche la sortie définitive du logiciel.

6 EXEMPLE

Il s'agit du dosage d'une masse de benzène réalisé par les équipes du laboratoire de la division Chimie. Les indications lues sur l'instrument sont des aires de pic.

6.1 - Fichier des données d'entrée

Les données sont constituées de 26 couples (Masse, Aire). Le sens de modélisation choisi affecte les masses étalons en y et les aires de pic en x : $Y = f(x) \rightarrow Masse = f(Aire)$

Les valeurs des aires (x_i) ont des variances inégales et elles ne sont pas corrélées. Les valeurs des masses (y_i) ont des variances inégales et elles sont corrélées. Ces corrélations sont représentées par une matrice de variances-covariances, symétrique à 26 lignes et 26 colonnes, qui comprend les variances sur sa diagonale principale et les covariances de part et d'autre de cette diagonale.

Le fichier "BenzèneC2015invcovmanuel.xls" comporte 2 feuilles d'enregistrement des données x,y :

1	Α	В	С	D	E	F	G	Н	1	J	К	L	М	Ν	0	Р	Q	R
1		Titre :	Etalonnage o	l'une c	artouche	de benzène		unité de me	esure :	Etalon	ng	nb points :	26		FICHI	ER S	PECIME	Ν
2										Instrument	sans	nb points :	26					
3		VA	LEUR		INCERTI	TUDE TYPE												
4	Point	Etalon	Instrument		Etalon	Instrument								Ind	iguer la va	ariable e	n X	
5	grandeur	Masse	Aire		Masse	Aire		Sens de la i	régressior	X	Instrument				· .			
6	1	300.26034	491628		5.48901105	2066.056656												
7	2	300.17739	486838		5.48751791	2045.926803		Le modèle es	stimé est `	Y = f(X)								
8	3	300.18776	491277		5.48770455	2064.583728												
9	4	300.10481	491483		5.48621142	2065.449986												
10	5	300.20850	491362		5.48807784	2064.941948												
11	6	399.38628	648633		7.27672835	2452.260324		Remarque :										
12	7	399.37591	653781		7.27654108	2471.72509			Si une va	riable ne com	oorte pas d'in	certitude asso	ciée, il est néo	cessair	e d'indiquer un	zéro.		
13	8	399.39665	652774		7.27691562	2467.916831												
14	9	399.32406	653749		7.27560474	2471.602067												
15	10	399.3240649	649421.1		7.27560474	2455.240316												
16	11	500.5963474	811399.64		9.10627354	4544.413216												
17	12	501.6539672	818168.92		9.12540543	4582.325983												
18	13	500.5341345	824574.53		9.10514814	4618.20194												
19	14	500.5859786	813777.54		9.10608597	4557.731142												
20	15	500.503028	819287.34		9.10458544	4588.589928												
21	16	500.6170851	817204.63		9.10664867	4576.925276												
22	17	599.763759	982351.57		10.9009864	3439.116523												
23	18	599.6393332	983871.55		10.8987337	3444.437824												
24	19	599.7430214	979058.62		10.9006109	3427.588228												
25	20	599.649702	988175.17		10.8989214	3459.504375												
26	21	599.649702	985732.53		10.8989214	3450.952932												
27	22	701.0153039	1141975.56		12.7346383	5556.673358												
28	23	701.067148	1155643.77		12.7355774	5623.180717												
29	24	701.0982544	1151402.91		12.7361408	5602.54536												
30	25	700.9945662	1155299.83		12.7342626	5621.507159												
31	26	700.9841974	1153302.74		12.7340748	5611.789634												
27	o 7 (► ► Etalo	n Instrument	VCOV Etalon	Prévisi	on Validatio	n /*1												_

Fig. 22 - Feuille "Etalon_Instrument"

	А	В	С	D	E	F	G	Н	I.	J	К	L	М	N	0	P
1			Matric	e de varian	ices-covari	iances des	valeurs éta	alons		FICHII	ER SPI	ECIMEN				=
2																
3		Matrice syme	trique :	LNE-RegPoly	n'utilise que	la partie trair	agulaire infé	rieure de la r	natrice	(cellules colo	rées en "orar	nge foncé")				
4		,					0					0 ,				
5	point	1	2	3	4	5	6	7	8	9	10	11	12	13	14	1
6	1	30.1292423	29.51862552	29.5196295	29.5115976	29.5216375	39.1432015	39.1421941	39.1442088	39.1371573	39.1371573	48.98474736	49.0876622	48.9786936	48.9837384	48.97
7	2	29.5186255	30.11285281	29.5115995	29.5035698	29.5136069	39.1325536	39.1315465	39.1335607	39.1265111	39.1265111	48.97142236	49.0743092	48.9653702	48.9704137	48.96
8	3	29.5196295	29.51159946	30.1149012	29.5045732	29.5146107	39.1338846	39.1328774	39.1348917	39.1278419	39.1278419	48.97308796	49.0759783	48.9670356	48.9720792	48.96
9	4	29.5115976	29.50356976	29.5045732	30.0985157	29.5065802	39.1232368	39.1222299	39.1242436	39.1171957	39.1171957	48.95976305	49.0626254	48.9537124	48.9587546	48.9
10	5	29.5216375	29.51360693	29.5146107	29.5065802	30.1189984	39.1365466	39.1355394	39.1375538	39.1305034	39.1305034	48.97641926	49.0793166	48.9703665	48.9754104	48.96
11	6	39.1432015	39.1325536	39.1338846	39.1232368	39.1365466	52.9507755	51.8904245	51.8930954	51.8837473	51.8837473	64.93860125	65.0750345	64.9305758	64.9372637	64.92
12	7	39.1421941	39.13154651	39.1328774	39.1222299	39.1355394	51.8904245	52.9480501	51.8917599	51.882412	51.882412	64.93693003	65.0733597	64.9289048	64.9355925	64.92
13	8	39.1442088	39.1335607	39.1348917	39.1242436	39.1375538	51.8930954	51.8917599	52.9535009	51.8850825	51.8850825	64.94027248	65.0767092	64.9322468	64.9389348	64.9
14	9	39.1371573	39.12651109	39.1278419	39.1171957	39.1305034	51.8837473	51.882412	51.8850825	52.9344243	51.8757358	64.92857399	65.0649861	64.9205498	64.9272366	64.91
15	10	39.1371573	39.12651109	39.1278419	39.1171957	39.1305034	51.8837473	51.882412	51.8850825	51.8757358	52.9344243	64.92857399	65.0649861	64.9205498	64.9272366	64.91
16	11	48.9847474	48.97142236	48.973088	48.9597631	48.9764193	64.9386013	64.93693	64.9402725	64.928574	64.928574	82.92421779	81.4364692	81.2556902	81.2640595	81.25
17	12	49.0876622	49.07430922	49.0759783	49.0626254	49.0793166	65.0750345	65.0733597	65.0767092	65.0649861	65.0649861	81.43646925	83.2730243	81.4264049	81.4347918	81.42
18	13	48.9786936	48.96537022	48.9670356	48.9537124	48.9703665	64.9305758	64.9289048	64.9322468	64.9205498	64.9205498	81.25569019	81.4264049	82.9037227	81.2540165	81.24
19	14	48.9837384	48.97041365	48.9720792	48.9587546	48.9754104	64.9372637	64.9355925	64.9389348	64.9272366	64.9272366	81.26405953	81.4347918	81.2540165	82.9208017	81.2
20	15	48.9756667	48.96234415	48.9640094	48.950687	48.9673401	64.9265631	64.9248922	64.928234	64.9165377	64.9165377	81.25066858	81.4213727	81.2406272	81.248995	82.8
21	16	48.9867653	48.97343972	48.9751054	48.9617799	48.9784368	64.9412764	64.9396051	64.9429477	64.9312487	64.9312487	81.26908115	81.439824	81.2590375	81.2674072	81.25
22	17	58.6389221	58.62297089	58.6249648	58.6090137	58.6289526	77.7370464	77.7350458	77.739047	77.7250429	77.7250429	97.28201664	97.486402	97.269994	97.2800128	97.26
23	18	58.6268043	58.61085639	58.6128499	58.5969021	58.6168369	77.7209819	77.7189817	77.7229821	77.7089809	77.7089809	97.26191322	97.4662563	97.2498931	97.2599098	97.2
24	19	58.6369024	58.62095181	58.6229456	58.6069951	58.6269333	77.734369	77.7323684	77.7363695	77.7223659	77.7223659	97.27866607	97.4830444	97.2666439	97.2766623	97.26
25	20	58.6278141	58.61186591	58.6138594	58.5979114	58.6178465	77.7223206	77.7203204	77.7243208	77.7103194	77.7103194	97.26358846	97.4679351	97.2515681	97.261585	97.2
26	21	58.6278141	58.61186591	58.6138594	58.5979114	58.6178465	77.7223206	77.7203204	77.7243208	77.7103194	77.7103194	97.26358846	97.4679351	97.2515681	97.261585	97.2
27	22	68.5025587	68.48392442	68.4862537	68.4676195	68.4909123	90.8131732	90.8108361	90.8155103	90.7991506	90.7991506	113.6457974	113.884562	113.631753	113.643457	113.
28	23	68.5076104	68.48897473	68.4913042	68.4726686	68.4959631	90.8198702	90.8175329	90.8222075	90.8058465	90.8058465	113.6541782	113.892961	113.640132	113.651837	113.6
29	24	68.5106414	68.49200494	68.4943345	68.4756981	68.4989937	90.8238884	90.821551	90.8262258	90.8098641	90.8098641	113.6592067	113.898	113.64516	113.656866	113.6
30	25	68.500538	68.48190426	68.4842334	68.4655998	68.4888919	90.8104944	90.8081573	90.8128314	90.7964722	90.7964722	113.6424451	113.881203	113.628401	113.640104	113.6
31	26	68.4995277	68.48089421	68.4832234	68.46459	68.4878818	90.809155	90.806818	90.811492	90.795133	90.795133	113.640769	113.879523	113.626725	113.638428	113.6
32	27	n Instrument	VCOV Etal	Dróvision	Validation	/ 🖓 7				T 4 m						×

Fig. 23 - Feuille "VCOV_Etalon"

Après lecture, LNE-RegPoly affiche le nom du fichier, indique qu'il y a 26 points, des incertitudes sur x et des covariances sur y (voir Fig. 24 ci-dessous).

6.2 - Polynôme estimé

Le modèle est une droite (k = 1) estimée par la méthode GLS_GGMR.

🛃 LNE-RegPol	oly : Estimation + Prévisio	n		Transfer.	_	-	_						_	
I - Donnée Donnée Nb point 26 Afficher	ies étalonnage as x, y BenzèneC; ts X Aire variances r sans covaria	2015invcovmanu ; v nce co	P P P Masse ariances variances	- D 1 Hypo	Degré du p Dothèses de Vale Vale	e la méth urs de x:1 urs de y:1 GLS_C	ode incertitud GGMR es	III - Méthode d'estimate 4 - GLS_GGMR variable et/ou covariance te variable et/ou covariance time les valeurs de x	ation - ? ? ces ces			Reset Fenêtre Accueil		LNE - RegPoly
IV - Estin	Coefficients estimations : Polynôme	e: y = b0 + b1* és abs(b) / u	x + b2*x²+ Matrice de	variances-cr	ovariances b2	cov b b3		x 490267.34507 488829.53002	-1	800	○ y observé ──── y modélisé	Modélisation GLS	GGMR	
b1 6 b2 b3	6.0648e-04 1.1054e-0	5 54.8€ E	-1.6232e-06 1.	2219e-10				490084.09248 490042.07896 490132.34547 651553.54047 653205.97625		600 -	U(y modélise	é)		•
b5	I [III]	-	۲	m			Þ	652906.40757 653137.50447 651741.52618 818121.69858	M	500 - 400 -		•		-
Test d'	Test de validation globale Test d'adéquation : Khi2 19.376					le modèle est validé avec le test du Khi2								-
Méti	katio de Birge	0.69852	Sauvegarder	résultats 🔹	?	J				4	5 6	7 8 Aire	9	10 11 12 × 10 ⁵

Fig. 24 – Résultats de l'estimation

Le polynôme de degré 1 est validé globalement selon le test du Khi2 et les coefficients b_0 et b_1 sont significatifs.

6.3 - Prévisions

Connaissant l'aire de pic, on souhaite évaluer la masse correspondante. D'après le sens d'estimation, une nouvelle valeur d'aire de pic est un prédicteur x₀. Cette valeur figure dans la feuille "Prévision" représentée ci-dessous.

	B) BenzèneC2015invcovmanuel.doc1 D														23				
	А	В	С	D	E	F	G	н	1 I	J	К	L	М	N	0	Р	C	۱	-
1		Donne	ées pour la pré	évision					e mesure :	Etalon	ng	nb points :	5		FICHI	ER SI	PECI	ME	NI
2										Instrument	sans	nb points :	5						
3		E	talon		Inst	trument													
4	Point	valeur	incertitude-type		valeur	incertitude-type			Sens de r	nodélisation :									
5	grandeur	Masse	Masse		Aire	Aire				Х	Instrumer	it							
6	1	300	5		750000	0													
7	2	400	7		800000	0			Reprendre	l'affectation des var	riables en)	(et en Y telle	qu'elle est	t indiq	uée dans la fe	uille Etalon_	Instrumen	t	
8	3	500	9		910000	0													
9	4	600	10		1000000	0			une incerti	itude-type non rens	eignée est	considérée co	mme nulle	э					
10	5	700	12		1100000	0													
11	6																		
12	7																		-
14	🕨 🕅 🛛 Etal	on_Instrument	VCOV_Etalon	Prévisio	n / Validation	/ 🕼 /					4) I.::

Fig. 25 - Feuille "Prévision"

Dans cet exemple, il y a 5 valeurs et chacune a une incertitude nulle. Il y aura 5 valeurs y_0 à prévoir. Après calcul, LNE- RegPoly affiche dans le panneau correspondant, les valeurs prévues des masses et leurs incertitudes associées.

ļ	V - Prévisions					
	Sens direct : x0 -> Prév y0		Prév y0	u(Prév y0)		Sens inverse : y0 -> Prév x0
		1	457.6573	8.2709	*	
	Choix valeurs x0 🔻	2	487.9814	8.8157		Choix valeurs y0 🔻
	feuille : Prévision	3	554.6943	10.0171		
		4	609.2777	11.0025		
		5	669.9258	12.0991	Ŧ	
	Afficher x0 Calculer		•	4		Afficher y0 Calculer

Fig. 26 – Valeurs prévues des masses y₀

6.4 - Fichiers de sauvegarde Excel

Les résultats, estimations et prévisions, sont sauvegardés dans le fichier des données initiales. Le logiciel crée 4 feuilles d'enregistrement des résultats (OLS, WLS, GLS et GLS_GGMR) et une feuille d'enregistrement des prévisions (Prev_y0). Les feuilles GLS_GGMR et Prev_y0, destinataires des sauvegardes sont représentées dans les figures ci-dessous.

	BenzèneC2015ii	nvcovmanuel.xl	sx:1											_	۵ ۲	23
	А	В	С	D	E	F	G	н	1	J	К	L	М	N	C	<u>_</u>
1			Estimation d	u polynôme p	par la méthoc	le des GLS_G	GMR									
2																
3	date/heure	03-nov-15	15:10:14	Nom du fichi	ier de donnée	BenzèneC20	15invcovman	uel								
4																
5					Matrice de v	ariances-cov	ariances		d° du polynô	1						
6			b	u(b)	b0	b1	b2	b3	b4	b5	b6					
7		b0	2.79625232	1.45328192	2.11202833	-1.6232E-06	#N/A	#N/A	#N/A	#N/A	#N/A					
8		b1	0.00060648	1.1054E-05	-1.6232E-06	1.2219E-10	#N/A	#N/A	#N/A	#N/A	#N/A					
9		b2	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A					
10		b3	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A					
11		b4	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A					
12		b5	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A					
13		b6	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A					
14		x	490267.345	488829.53	490084.092	490042.079	490132.345	651553.54	653205.976	652906.408	653137.504	651741.526	818121.699	820769.814	8203	7
15		validation														
16		Khi2	19.3760323		Ratio Birge	0.89851805										
17 ∣∢	● ► ► OLS ,	conclusion	le modèle e GLS_GGMR	st validé avec Prev_y0	le test du Kh Etalon_Instru	i2 ment / VCO	V_Etalon / P	révision 🆯 🞾	/ [] • [▶[▼].::

	С	D	E	F	G	н	1	J	K	L	М	N	0	Р	Q	R	S	Т	U	
1					Prévis	ions de	s valeu	ırs de y												
2		Compteur	OLS	50		Compteur WLS			50			Compteur GLS		0		Compteur (LS_GGMR	16	j
3	date	/heure	02-déc-15	14:37:50		date/	heure	02-déc-15	14:45:50							date/	/heure	02-déc-15	18:10:27	1
4	fich	ier x,y	enzèneC201	5invcovmanue		fichier x,y		enzèneC2015invcovmanue								fichi	er x,y	enzèneC2015	Sinvcovmanu	
5	fich	ier x0	enzèneC201	5invcovmanue		fichier x0		enzèneC2015invcovmanue									ier x0	enzèneC2015invcovma		
6	méthode	OLS	d° poly.	1		méthode	WLS	d° poly.	2							méthode	GLS_GGMR	d° poly.	1	
7																				
8	x0	ux0	Prév y0	u(Prév y0)		x0	ux0	Prév y0	u(Prév y0)							x0	ux0	Prév y0	u(Prév y0)	
9	750000	0	458.482196	0.49671577		750000	0	459.409382	2.53627316							750000	0	457.657304	8.27093788	
10	800000	0	488.761199	0.47732585		800000	0	489.776773	2.62088303							800000	0	487.981374	8.81565219	
11	910000	0	555.375007	0.51181703		910000	0	556.237158	2.59164064							910000	0	554.694329	10.0171018	
12	1000000	0	609.877213	0.60601751		1000000	0	610.258058	2.80124136							1000000	0	609.277655	11.0024726	
13	1100000	0	670.43522	0.7522925		1100000	0	669.905735	4.03815585							1100000	0	669.925795	12.099149	
14																				
15																				
16	date	/heure	14-déc-15	18:25:08		date/	heure	14-déc-15	10:53:04											
17	17 fichier x,y		BenzèneC20	BenzèneC2015invcovman		fichier x,y		BenzèneC20	15invcovman											
18	fich	ier x0	BenzèneC20	15invcovman		fichier x0		BenzèneC20	15invcovman											
10	► H Prév	yo OLS	WLS GLS	GLS_GGMR 2	Etalon_Instrum	nent VCO	V_Etalon /	Prévision / Val	idation / 🧐	/			14						_	

Fig. 28 – Feuille de sauvegarde des prévisions y_0

7 NOTATIONS UTILISEES

Ce manuel reprend les notations du GUM. Les lettres majuscules représentent des variables aléatoires de valeur inconnue ; les lettres minuscules des variables certaines ou connues.

7.1 - <u>Variable x</u>

 x_i une valeur de la variable x $u(x_i)$ l'incertitude type associée à la valeur x_i $u^2(x_i)$ la variance de la valeur x_i $u(x_i, x_j)$ ou cov (x_i, x_j) la covariance des valeurs x_i et x_j Ux matrice de variances-covariances des valeurs de x

x vecteur colonne des valeurs de la variable x

x^k vecteur colonne des valeurs de la variable x élevées à la puissance k

7.2 - Variable y

 y_i une valeur de la variable y $u(y_i)$ l'incertitude type associée à la valeur y_i $u^2(y_i)$ variance de la valeur y_i $u(y_i, y_j)$ covariance des valeurs y_i et y_j de la variable y Uy matrice de variances-covariances des valeurs de y

y vecteur colonne des valeurs de la variable y $y_{\text{expliqué}}$ vecteur colonne des valeurs de la variable y recalculées avec le polynôme

7.3 - Polynôme y = f(x)

n nombre de couples (x_i,y_i)

1 vecteur colonne constitué de 1 X_k matrice constituée des vecteurs (1, x, ..., x^k). Cette matrice comporte n lignes et (k+1) colonnes.

k degré du polynôme b₀ coefficient constant dans le polynôme b₁ coefficient du polynôme associé à x b_k coefficient du polynôme associé aux valeurs de x élevées à la puissance k b vecteur des coefficients du polynôme

SCR somme des carrés des écarts entre les points et le polynôme (OLS) SCRw, SCR_{Uy} somme des carrés des écarts pondérés entre les points et le polynôme

syols écart-type déduit de SCR

7.4 - Prévisions

 x_0 une valeur de x $u(x_0)$ l'incertitude type associée à la valeur x_0 X0 vecteur des nouvelles valeurs de x

 y_0 une nouvelle valeur de y $u(y_0)$ l'incertitude type associée à la valeur y_0 Y0 vecteur des nouvelles valeurs de y

Prév x_0 une valeur de x prévue avec y_0 (les solutions multiples elles sont notées Prév $x_{0,1}$, ..., Prév $x_{0,k}$) Prév y_0 la valeur de y prévue avec x_0

Jx jacobienne de y_0 par rapport à x_0 Jb jacobienne de y_0 par rapport à b

8 QUELQUES FORMULES DE CALCUL

8.1 - OLS (Moindres carrés ordinaires)

. principe : La méthode minimise la somme des carrés des écarts en y entre les points et le polynôme

$$\underset{b}{\text{Min}} \sum_{x} y - f(x) = MinSCR$$

. <u>validation globale du polynôme estimé</u> : F = $s_{y_{expliqué}}^2 / s_{y_{OLS}}^2$ où $s_{y_{expliqué}}^2 = (y'_{explique} y_{explique}) / k$ $s_{y_{OLS}}^2 = (V'V) / (n - (k + 1))$

. expression des estimateurs (forme matricielle)

- coefficients : $b_{OLS} = (X_k'X_k)^{-1}X_k'Y$
- matrice de variances-covariances associée : $vcov(b_{OLS}) = s_{v, OLS}^2(X_k'X_k)^{-1}$
- variance des écarts $s_{y_{OLS}}^2 = (V'V) / (n (k + 1)) = SCR / (n (k + 1))$
 - s_{y_OLS} est l'estimation de u(y) pour toutes les valeurs de y

. cas d'une droite :

$$\underset{b_{i}, b_{i}}{\mathsf{M}} in \sum_{i} y - (b_{i} + b_{i} x))$$

variance des écarts $s_{V OLS}^2 = (V'V) / (n - 2)$

8.2 - WLS (Moindres carrés pondérés)

. <u>principe</u> : la méthode minimise la somme pondérée des carrés des écarts en y entre les points et le polynôme :

$$\underset{b}{\mathsf{Min}}\underbrace{\sum}_{\mathbf{y}}(\mathbf{y})(\mathbf{y}-\mathbf{f}_{\mathbf{y}}(\mathbf{x})) = \mathsf{SCR}_{uy}$$

. <u>validation globale du polynôme estimé</u> : SCR_{Uy} = (V'U_y⁻¹V) est une variable du Khi2 à (n – k – 1) degrés de liberté. Avec le test du Khi2, il est vérifié que SCR_{Uy} n'est ni trop faible ni trop élevée (elle est comprise dans son intervalle de confiance à 95%).

On peut lui associer le Ratio de Birge dont la valeur attendue est 1 quel que soit le degré du polynôme et le nombre de points. Son expression est :

Ratio de Birge =
$$\sqrt{\frac{SCR_{UY}}{n - k - 1}}$$

. expression des estimateurs (forme matricielle)

- coefficients $b_{WLS} = (X'U_y^{-1}X)^{-1}X'U_y^{-1}Y$

- matrice de variances-covariances associée : $vcov(b_{WLS}) = (X'U_y^{-1}X)^{-1}$

$$\begin{array}{c} M \text{ in } \sum_{\mathbf{b}_{i}} \underbrace{\mathbf{y}_{i}^{1}}_{\mathbf{u}^{2}(\mathbf{y}_{i})} + b \cdot \mathbf{x} \mathbf{y}_{i} = M \text{ in } \mathbf{S} \mathbf{C} \mathbf{R}_{uy} \\ b_{i}, b_{i} \end{array}$$
cas d'une droite :

8.3 - GLS_simples (Moindres carrés généralisés)

. <u>principe</u> : la méthode minimise une forme quadratique composée des écarts en y entre les points et le polynôme, et des variances-covariances de ces écarts :

. <u>validation globale du polynôme estimé</u> : même test que dans le cas WLS, avec les statistiques suivantes :

SCR_{Uy} = (V'U_y⁻¹V)
Ratio de Birge =
$$\sqrt{\frac{SCR_{U_y}}{n - k - 1}}$$

. expression des estimateurs (forme matricielle)

 $b_{GLS_simples} = (X'Uy^{-1}X)^{-1}X'Uy^{-1}Y$ $vcov(b_{GLS_simples}) = (X'Uy^{-1}X)^{-1}$

Ces expressions correspondent à celles des WLS avec une matrice Uy qui n'est pas diagonale.

8.4 - GLS_GGMR (Moindres carrés généralisés avec incertitude sur x)

. <u>principe</u> : la méthode minimise une forme quadratique composée des écarts en x et en y entre les points et le polynôme, et de l'inverse de la matrice U :

$$\operatorname{Min} S(\beta) = \int_{\beta}^{\beta} U^{1} f_{\beta}$$

b,x

où U⁻¹ est l'inverse de la matrice des incertitudes associées à x et à y.

Dans le cas d'une droite, les écarts en x et en y s'écrivent :

$$\mathbf{f}_{\beta} \neq (\beta) = \begin{pmatrix} X_{\bar{i}} x_{i} \\ M \\ X_{\bar{m}} x_{m} \\ Y_{\bar{i}} (b 0 + b I * \chi) \\ M \\ Y_{\bar{m}} (b 0 + b I * \chi) \end{pmatrix}$$

. <u>validation globale du polynôme estimé</u> : même test que dans le cas WLS, avec les statistiques suivantes :

S(β)

Ratio de Birge =
$$\sqrt{\frac{S(B)}{2n-n-k-1}}$$

. <u>expression des estimateurs</u> : le système est résolu avec une méthode d'analyse numérique (méthode de Gauss-Newton). Il n'existe pas d'expression analytique pour les estimateurs.

8.5 - Prévision de y₀

. cas d'une droite

$$Prév y = b + b \cdot x_{0} \qquad u(Prév_{0}y) = \sqrt{2}(b)_{0} + x \cdot \frac{2}{3}u^{2}(b) + 2 \cdot x \cdot \frac{2}{9}u(b) + b \cdot \frac{2}{9}u^{2}(x_{0})$$

. <u>cas d'un polynôme de degré k > 1</u> les calculs sont effectués avec les outils matriciels.

8.6 - Prévision de x₀

. cas d'une droite

$$\Pr{ev}_{x} = \frac{y_{0} - b_{0}}{b_{1}} \qquad u(\Pr{ev}_{0}x) = \sqrt{\left[2(b) + \Pr{ev}_{0}x^{2} + u_{1}^{2}(b) + 2x_{0}^{2}\Pr{ev}_{0}x_{0}^{2} + \cos(b_{1},b) + u_{0}^{2}(y)\right] / h^{2}}$$

. cas d'un polynôme de degré k > 1

Pour un prédicteur y_0 , le nombre de solutions est au maximum k. Ces k solutions ne sont pas toutes des nombres réels.

Lorsque la solution est un nombre réel, son incertitude type est calculée avec la somme quadratique des composantes suivantes :

- $u_f(x_0)$ est l'incertitude due au polynôme :

$$\mathbf{u}_{f}(\mathbf{x})$$
 o \mathbf{v}_{f}^{i} $\mathbf{u}_{b}(\mathbf{x},\mathbf{x})_{b}\mathbf{U}\mathbf{J}_{b}\mathbf{J}_{a}^{-1}$

- $u_{y0}(x_0)$ est l'incertitude due à y_0 :

$$u_{y}(x_{0}) = \frac{u(y0)}{J_{x0}}$$

9 BIBLIOGRAPHIE

(1) "The determination and use of straight-line calibration functions", ISO/DTS TS 28037 2009 – 01 – 21 (L'AFNOR a édité une version française en 2015).

(2) M J T Milton, p M Harris, I M Smith, A S Brown and B A Goody, "Implementation of a generalized least-squares method for determining calibration curves from data with general uncertainty structures", Metrologia, 43, 2006, S291-S298.

(3) C. Yardin, "Estimer la droite d'étalonnage avec les moindres carrés généralisés et évaluer le résultat de mesure", Revue Française de Métrologie, Volume 2012 – 3, n°31, pp. 21 – 39, (2013)

