

Certificat d'examen de type n° F-06-B-1069 du 9 août 2006

Accréditation n° 5-0012

Organisme désigné par le ministère chargé de l'industrie par arrêté du 22 août 2001

DDC/22/G050201-D1-1

Instrument de pesage à fonctionnement automatique trieur-étiqueteur type TMDW 9004 destiné à être intégré sur les véhicules de collecte de déchets Classe Y(a)

Le présent certificat est prononcé en application du décret n° 2001-387 du 3 mai 2001 relatif au contrôle des instruments de mesure et de l'arrêté du 19 mars 1998 réglementant la catégorie d'instruments de mesure : instruments de pesage à fonctionnement automatique : trieurs-étiqueteurs.

FABRICANT:

TERBERG MACHINES BV, BARONIEWEG 23, 3403 NL IJSSELSTEIN (PAYS-BAS).

DEMANDEUR:

TERBERG MATEC FRANCE, 17 RUE PAUL MAINO, 51689 REIMS CEDEX 2 (FRANCE).

CARACTERISTIQUES:

L'instrument de pesage à fonctionnement automatique trieur-étiqueteur type TMDW 9004, ci-après dénommé instrument, est destiné à être intégré dans les véhicules de collecte des déchets. Il permet la pesée individuelle de conteneurs de déchets.

L'opération de pesage se fait en mode dynamique : les conteneurs sont pesés lors de la levée avant décharge (avec déchets) puis lors de la descente (après décharge).

L'instrument est constitué par :

- 1/ une unité de pesage comprenant :
 - a/ un dispositif récepteur de charge constitué par un porte-charge spécialement conçu pour manipuler des conteneurs et intégré dans le dispositif de levage des conteneurs (dénomination courante "chaise");
 - b/ un dispositif indicateur SYSTEC type IT9000VA faisant l'objet du certificat d'essai D09-97.08 délivré par le PTB (organisme n°102 notifié par l'Allemagne); ce dispositif assure notamment le traitement des informations (calcul de la différence des pesées, indication de l'état de fonctionnement de la balance);
 - c/ un dispositif équilibreur et transducteur de charge constitué par :
 - * soit un capteur à jauges de contrainte TEDEA HUNTLEIGH type 1320 faisant l'objet du certificat d'essai TC2274 délivré par le NMi (organisme n° 122 notifié par les Pays-Bas);
 - * soit par tout capteur à jauges de contrainte faisant l'objet d'un certificat de conformité à la recommandation R 60 de l'OIML et/ou d'un certificat d'essais délivrés par un organisme notifié au sein de l'Union européenne, et respectant les conditions suivantes :

- ce capteur n'est pas à sortie numérique
- ce capteur n'est pas avec bain d'huile
- les caractéristiques doivent respecter les critères de compatibilité des modules prévus par le guide WELMEC 2
- $n_{IC} \ge 3000 \text{ et } Y \ge 10000$
- ce capteur doit être équipé d'un câble de connexion blindé à 6 fils dont le blindage peut lui être relié, câble doté d'un système de télédétection (par exemple pour l'élimination d'erreurs liées à une défaillance de l'alimentation ou à de faibles parasites)
- si le capteur est marqué « NH », des essais d'humidité ont été réalisés sur ce type de capteur sur la base des prescriptions de la R51/1996 de l'OIML
- la conception du capteur et le matériau doivent être conformes à ce qui est prévu pour le capteur TEDEA HUNTLEIGH type 1320
- le capteur est protégé par un boîtier en acier inoxydable
- * un dispositif de stockage de données et/ou un dispositif imprimeur permettant la mémorisation et/ou l'impression des données suivantes :
 - date et heure de l'indication
 - nombre d'identification de l'opération
 - nombre d'identification du conteneur (option)
 - poids brut du conteneur
 - poids du conteneur déchargé
 - poids net calculé du contenu
- * un capteur de dénivellement qui rend l'affichage aveugle, empêche la transmission de données et le stockage des données de pesage dès que le dénivellement devient supérieur à 5 %.

Un véhicule peut être doté d'une ou de 2 "chaises" indépendantes et pouvant être couplées (en particulier pour le pesage de bacs à 4 roues). Dans le cas où 2 chaises sont couplées, un seul dispositif de compensation des effets de l'accélération de la charge est utilisé pour ces 2 "chaises".

L'instrument comporte les dispositifs fonctionnels suivants :

- dispositif de calcul de la différence entre les valeurs mesurées avant et après décharge du conteneur ;
- dispositif de contrôle de la stabilité des mesures lors de la pesée dynamique ;
- dispositifs de sortie permettant la connexion d'organes périphériques.

Les caractéristiques métrologiques sont les suivantes :

- portée maximale : $100 \text{ kg} \le \text{Max} \le 800 \text{ kg}$

- portée minimale : $Min \ge 5$ e - échelon de vérification : $e \ge 0.5$ g - nombre maximal d'échelons : $n \le 200$

L'instrument peut être présenté en version bi-étendue. Dans ce cas, les caractéristiques propres à chaque étendue sont celles citées ci-dessus, en particulier pour le nombre maximal d'échelons de vérification et leur valeur minimale.

SCELLEMENT:

L'instrument est équipé d'un dispositif de scellement tel que décrit en annexe.

$\underline{\textbf{CONDITIONS PARTICULIERES D'UTILISATION}}:$

L'installation d'un instrument sur un véhicule doit être telle qu'une opération de pesage ne puisse être réalisée que lorsque le véhicule est à l'arrêt.

INSCRIPTIONS REGLEMENTAIRES:

La plaque d'identification des instruments concernés par le présent certificat comporte les indications suivantes :

- nom ou marque d'identification du fabricant
- numéro de série et désignation du type de l'instrument

- cadence maximale de fonctionnement en nombre de charges par minute
- tension de l'alimentation électrique, en V
- numéro et date du présent certificat
- indication de la classe d'exactitude sous la forme Y(a)
- échelon de vérification e
- échelon d
- portée maximale Max
- portée minimale Min

CONDITIONS PARTICULIERES DE VERIFICATION:

La vérification primitive d'un instrument est effectuée sur le véhicule entièrement équipé. Dans chacun de ces cas, l'instrument est installé de manière définitive sur le lève-conteneur.

Outre l'examen de conformité à la décision d'approbation de modèle, les essais à réaliser lors de la vérification primitive sont les suivants :

- 1/ excentration selon la procédure décrite en Annexe A.6.7.1 de la Recommandation R 51 de l'OIML. Cet essai est réalisé pour des conteneurs à 4 roues ou compartimentés ;
- 2/ essai de pesage en appliquant l'essai fonctionnel décrit en Annexe A.6.1.1 de la Recommandation R 51 de l'OIML à la vitesse maximale de fonctionnement.

Ces essais sont réalisés en mode de fonctionnement automatique.

Les tolérances applicables pour l'essai 1/ sont définies par le paragraphe 2.8 de la Recommandation R 51 de l'OIML (valeurs du tableau 3 pour la classe Y(a)).

Les tolérances applicables pour l'essai 2/ sont définies par le premier alinéa du paragraphe 2.5.2 de la Recommandation R 51 de l'OIML (valeurs du tableau 3 pour la classe Y(a)).

DEPOT DE MODELE:

Plans et schémas déposés au Laboratoire national de métrologie et d'essais (LNE) sous la référence DDC/22/G050201-D1 et chez le demandeur.

VALIDITE:

Le présent certificat a une validité de 10 ans à compter de la date figurant dans son titre.

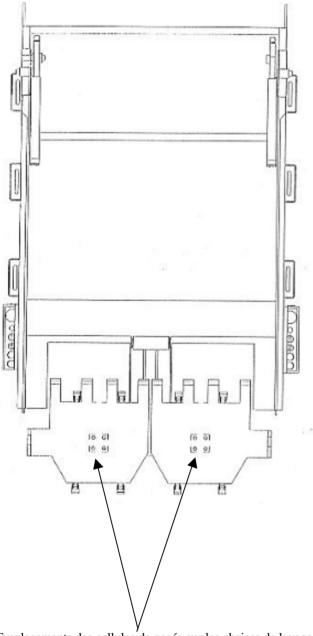
REMARQUE:

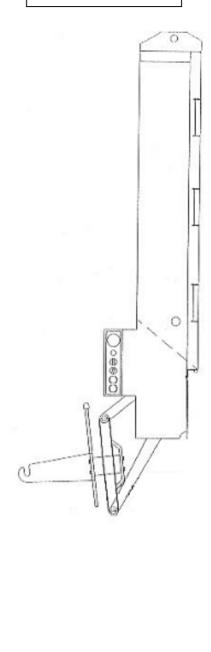
En application du décret n° 2001-387 du 3 mai 2001 susvisé, les instruments de pesage à fonctionnement automatique non utilisés à l'occasion des opérations mentionnées en son article 1^{er} ne sont pas soumis à la vérification primitive et à la vérification périodique.

ANNEXES:

- Scellement
- Déroulement d'un cycle
- Schéma d'ensemble

Pour le Directeur général

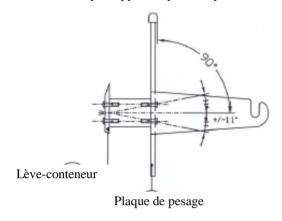

Laurence DAGALLIER
Directrice Développement et Certification

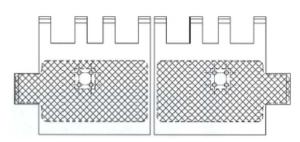


Dessins d'ensemble

Emplacements des cellules de pesée sur les chaises de levage

Sur une chaise de pesage, selon les conditions d'installation (par ex le type de lève-conteneur), la cellule peut être positionnée comme le montrent les dessins de la page suivante – l'emplacement est inclus dans les zones quadrillées

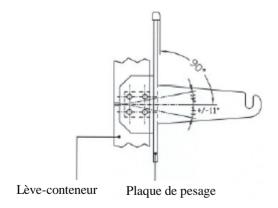


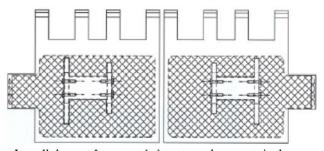

Emplacement des cellules de pesée

Montage de la cellule

- mouvement vers l'avant
- levage par le peigne et par le bras

La cellule peut être montée avec un angle de $\pm\,11^\circ$ par rapport au plan du système de levage



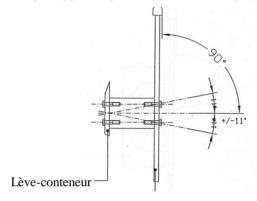

La cellule peut être montée à tout emplacement inclus dans la zone hachurée selon la géométrie du dispositif de levage

Montage de la cellule

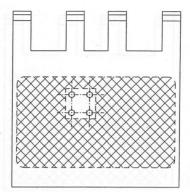
- mouvement latéral
- levage par le peigne et par le bras

La cellule peut être montée avec un angle de $\pm 11^{\circ}$ par rapport au plan du système de levage

La cellule peut être montée à tout emplacement inclus dans la zone hachurée selon la géométrie du dispositif de levage



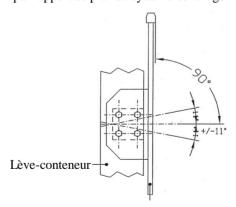
Emplacement des cellules de pesée (suite)


Montage de la cellule

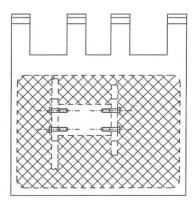
- mouvement vers l'avant
- levage par le peigne

La cellule peut être montée avec un angle de $\pm 11^{\circ}$ par rapport au plan du système de levage

Plaque de pesage

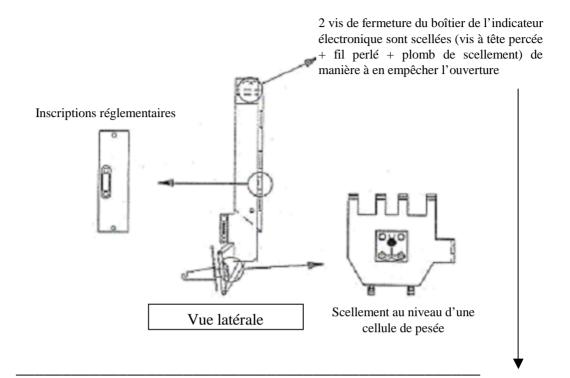


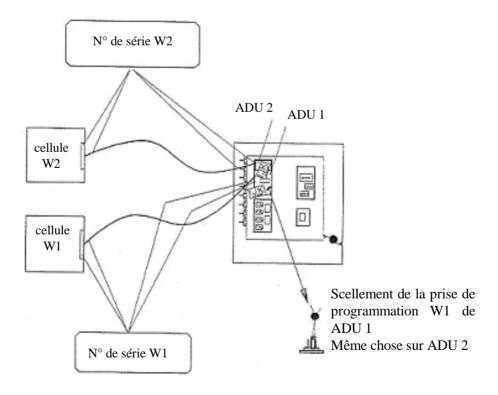
La cellule peut être montée à tout emplacement inclus dans la zone hachurée selon la géométrie du dispositif de levage


Montage de la cellule

- mouvement latéral
- levage par le peigne

La cellule peut être montée avec un angle de $\pm\,11^\circ$ par rapport au plan du système de levage


Plaque de pesage



La cellule peut être montée à tout emplacement inclus dans la zone hachurée selon la géométrie du dispositif de levage

Dispositif de scellement

Déroulement d'un cycle

Un cycle de pesage comporte les étapes suivantes :

- accrochage du conteneur sur le dispositif lève-conteneur
- montée du conteneur avec pesage durant le passage dans la "fenêtre" de pesage
- vidange du conteneur
- descente du conteneur avec pesage durant le passage dans la "fenêtre" de pesage
- calcul du poids net de déchets déversés
- mémorisation des données et libération du conteneur

