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Polynomial calibration 

What does it involve? 

 Can be thought of as a two-stage process  

 

 Stage 1: Determination of polynomial calibration function  

 

 Stage 2: Use of polynomial calibration function  

 

 

 



Polynomial calibration 

What does it involve? 

Measurement data  

Stimulus and response values, with uncertainties associated with 

response values 



Polynomial calibration 

What does it involve? 

Polynomial calibration function (degree 2) 

Estimates of coefficients and covariance matrix  



Polynomial calibration 

What does it involve? 

Use of calibration function to determine value of stimulus (and associated 

uncertainty) corresponding to measured value of response (and 

associated uncertainty) 



Polynomial calibration 

What does it involve? 

 Calibration function may be used in other ways 

 

 Variations arise, e.g., where the calibration function is constrained to 

pass through the origin 

 

 This presentation is restricted to unconstrained calibration functions 

 

 

 



Polynomial calibration 

Uncertainty structures 

 Earlier example assumed that uncertainties associated with stimulus 
values are negligible  

 

 Other uncertainty structures occur within metrology  

 

 Can be “ranked” in increasing order of complexity 

 

 



Polynomial calibration 

Uncertainty structure 1 

 Stimulus values 𝑥1, … , 𝑥𝑚 

 

 

 

 

 

 

 Response values 𝑦1, … , 𝑦𝑚 

 Standard uncertainties 𝑢 𝑦1 , … , 𝑢 𝑦𝑚  

 

Covariance matrix 𝑽𝒚 is diagonal 



Polynomial calibration 

Uncertainty structure 2 

 Stimulus values 𝑥1, … , 𝑥𝑚 

 

 

 

 

 

 

 Response values 𝑦1, … , 𝑦𝑚 

 Standard uncertainties 𝑢 𝑦1 , … , 𝑢 𝑦𝑚  

 Covariances 𝑢 𝑦𝑖 , 𝑦𝑗 , 𝑖 = 1,… ,𝑚, 𝑗 = 1,… ,𝑚, 𝑖 ≠ 𝑗 

 

Covariance matrix 𝑽𝒚 is not diagonal 



Polynomial calibration 

Uncertainty structure 3 

 Stimulus values 𝑥1, … , 𝑥𝑚 

 Standard uncertainties 𝑢 𝑥1 , … , 𝑢 𝑥𝑚  

 

 

 

 

 

 Response values 𝑦1, … , 𝑦𝑚 

 Standard uncertainties 𝑢 𝑦1 , … , 𝑢 𝑦𝑚  

 

Covariance matrix 𝑽𝒙 is diagonal 

Covariance matrix 𝑽𝒚 is diagonal 



Polynomial calibration 

Uncertainty structure 4 

 Stimulus values 𝑥1, … , 𝑥𝑚 

 Standard uncertainties 𝑢 𝑥1 , … , 𝑢 𝑥𝑚  

 Covariances 𝑢 𝑥𝑖 , 𝑥𝑗 , 𝑖 = 1,… ,𝑚, 𝑗 = 1,… ,𝑚, 𝑖 ≠ 𝑗 

 

 

 

 

 Response values 𝑦1, … , 𝑦𝑚 

 Standard uncertainties 𝑢 𝑦1 , … , 𝑢 𝑦𝑚  

 Covariances 𝑢 𝑦𝑖 , 𝑦𝑗 , 𝑖 = 1,… ,𝑚, 𝑗 = 1,… ,𝑚, 𝑖 ≠ 𝑗 

 

Covariance matrix 𝑽𝒙 is not diagonal 

Covariance matrix 𝑽𝒚 is not diagonal 



Polynomial calibration 

Uncertainty structures 

 Problems arising from the various uncertainty structures have been 
considered for many years by NMIs  

• Software made freely available 

 

 Can be solved using linear algebra, either directly (uncertainty 
structures 1 and 2) or iteratively (3 and 4)  

 

 



Polynomial calibration 

Parametrisation [1] 

 Traditional representation  
𝑝 𝑥, 𝐀 = 𝐴0 + 𝐴1𝑥 + ⋯+ 𝐴𝑛𝑥

𝑛 

 

 But for very large (or very small) values of 𝑥 , 𝑥𝑟 becomes very large 
(very small) as 𝑟 increases  

• Potential numerical issues* 

 

 Also not always straightforward to interpret coefficient values  

 

 Look for alternative parametrisation  

*depending on nature of data and/or polynomial degree 



Polynomial calibration 

Parametrisation [2] 

 Representation in terms of scaled stimulus values, i.e.,   
𝑝 𝑥, 𝐁 = 𝐵0 + 𝐵1𝑥 + ⋯+ 𝐵𝑛 𝑥 𝑛, 

where  

𝑥 =
𝑥

max⁡(|𝑥𝑖|)
 

 

 All 𝑥 -values, and therefore powers of 𝑥 -values, lie in the interval −1, 1  

 

 Easier to understand contributions of each term  

 

 

 



Polynomial calibration 

Parametrisation [3] 

 Representation in terms of normalised stimulus values, i.e.,  

𝑝 𝑥, 𝐂 = 𝐶0 + 𝐶1𝑡 + ⋯+ 𝐶𝑛𝑡
𝑛,  

where  

𝑡 =
2𝑥 − (𝑥min + 𝑥max)

𝑥max − 𝑥min

 

 

 All 𝑡-values lie in the interval −1, 1 , with min{𝑡𝑖} = −1 and max 𝑡𝑖 = 1 

 

 



Polynomial calibration 

Parametrisation [3] 

 

 

 

Monomial representation 𝑡𝑟 

𝑟 = 1 𝑟 = 2 



Polynomial calibration 

Parametrisation [3] 

 

 

 
𝑟 = 1, 3 

Monomial representation 𝑡𝑟 

𝑟 = 2, 4 



Polynomial calibration 

Parametrisation [3] 

 

 

 
𝑟 = 1, 3, 5 

Monomial representation 𝑡𝑟 

𝑟 = 2, 4, 6 



Polynomial calibration 

Parametrisation [3] 

 

 

 
𝑟 = 1, 3, 5, 7 

Monomial representation 𝑡𝑟 

𝑟 = 2, 4, 6, 8 



Polynomial calibration 

Parametrisation [3] 

 

 

 
𝑟 = 1, 3, 5, 7, 9 

Monomial representation 𝑡𝑟 

𝑟 = 2, 4, 6, 8, 10 



Polynomial calibration 

Parametrisation [3] 

 

 

 
𝑟 = 1, 3, 5, 7, 9, 11 

Monomial representation 𝑡𝑟 

𝑟 = 2, 4, 6, 8⁡10, 12 

 

 

 

 

 

 

 

 

 

 

 Generally fine for low values of 𝑛 

 Basis functions for large even or odd powers look similar leading to ill-
conditioning and loss of numerical precision when determining 
coefficients 

 



Polynomial calibration 

Parametrisation [4] 

 Representation in terms of Chebyshev polynomials, i.e.,  
𝑝 𝑥, 𝐃 = 𝐷0𝑇0 𝑡 + 𝐷1𝑇1 𝑡 + ⋯+𝐷𝑛 𝑇𝑛(𝑡) 

where 𝑡 is defined as before and  
𝑇0 𝑡 = 1,⁡ 
𝑇1 𝑡 = 𝑡,⁡ 

⁡𝑇𝑟 𝑡 = 2𝑡𝑇𝑟−1 𝑡 − 𝑇𝑟−2 𝑡 , 𝑟 ≥ 2 

 

 

 



Polynomial calibration 

Parametrisation [4] 

 

 

 

Chebyshev polynomial representation 𝑇𝑟(𝑡) 

𝑟 = 1 𝑟 = 2 



Polynomial calibration 

Parametrisation [4] 

 

 

 
𝑟 = 1, 3 𝑟 = 2, 4 

Chebyshev polynomial representation 𝑇𝑟(𝑡) 



Polynomial calibration 

Parametrisation [4] 

 

 

 
𝑟 = 1, 3, 5 𝑟 = 2, 4, 6 

Chebyshev polynomial representation 𝑇𝑟(𝑡) 



Polynomial calibration 

Parametrisation [4] 

 

 

 
𝑟 = 1, 3, 5, 7 𝑟 = 2, 4, 6, 8 

Chebyshev polynomial representation 𝑇𝑟(𝑡) 



Polynomial calibration 

Parametrisation [4] 

 

 

 
𝑟 = 1, 3, 5, 7, 9 𝑟 = 2, 4, 6, 8⁡10 

Chebyshev polynomial representation 𝑇𝑟(𝑡) 



 

 

 

 

 

 

 

 

 

 

 Basis functions intertwine leading to better numerical conditioning 

 Use of Chebyshev polynomials recommended for high values of 
polynomial degree  

 

 

Polynomial calibration 

Parametrisation [4] 

 

 

 
𝑟 = 1, 3, 5, 7, 9, 11 𝑟 = 2, 4, 6, 8⁡10, 12 

Chebyshev polynomial representation 𝑇𝑟(𝑡) 



Polynomial calibration 

Parametrisation 

 For numerical reasons, use of Chebyshev polynomials is 
recommended 

 

 Use of other parametrisations may be fine depending on  

• Nature of data and/or  

• Polynomial degree  

 

 

 

 



Polynomial calibration 

Parametrisation 

 Example: Thermocouple reference function  

 Interval −50⁡°C, 1064.18⁡°C  

 

 

 

 

 

Degree 𝒓 Raw               

𝒙-values 

0 0 

1 5.4031x10-3 

2 1.2593x10-5 

3 -2.3248x10-8 

4 3.2203x10-11 

5 -3.3147x10-14 

6 2.5574x10-17 

7 -1.2507x10-20 

8 2.7144x10-24 



Polynomial calibration 

Parametrisation 

 Example: Thermocouple reference function  

 Interval −50⁡°C, 1064.18⁡°C  

 

 

 

 

 

Degree 𝒓 Raw               

𝒙-values 

Scaled    

𝒙-values 

Normalised Chebyshev 

0 0 0 4.3036 4.6391 

1 5.4031x10-3 5.7499 5.5278 5.3711 

2 1.2593x10-5 14.2618 0.4784 0.3706 

3 -2.3248x10-8 -28.0174 -0.0543 -0.0729 

4 3.2203x10-11 41.3005 0.2206 0.0371 

5 -3.3147x10-14 -45.2390 -0.1637 -0.0130 

6 2.5574x10-17 37.1447 0.0216 0.0022 

7 -1.2507x10-20 -19.3310 -0.0249 -0.0004 

8 2.7144x10-24 4.4648 0.0252 0.0002 



Polynomial calibration 

Parametrisation 

 Example: Thermocouple reference function  

 Interval −50⁡°C, 1064.18⁡°C  

 

 

 

 

 



Polynomial degree unknown in advance  

 In some metrology applications, the value of polynomial degree is not 
specified in advance 

• Minimum and/or maximum degree may be specified  

 

 Required therefore to determine calibration functions of different 
degrees and assess their suitability 

 

 Ideally assessment would be objective rather than subjective 

 

 

 



Polynomial degree unknown in advance 

Assessment of different degrees:  

1. Visual inspection 

 

 

 

 Subjective but can still be useful  

 

 Useful for cases where available data is limited and statistical tests are 
not so useful 

 

 Suitability (or not) of a particular polynomial degree can be provided by 
inspection of   

• Plot of measurement data and calibration function 

• Randomness of weighted residuals can be helpful  

 

 

 



Polynomial degree unknown in advance 

Assessment of different degrees:  

2. Monotonicity 

 

 

 

 To be useful as a calibration function, a function generally must be 
strictly monotonic over the interval over which it is defined and to be 
used  

 

 Simple (but not infallible) approach to check monotonicity  

• Generate large number of uniformly-spaced points over the interval 
of stimulus values  

• Evaluate calibration function at those points 

• Check if function values form an increasing or decreasing set  

 

 Rigorous approach can be applied for a calibration function expressed 
in terms of Chebyshev polynomials  

 

 

 



Polynomial degree unknown in advance 

Assessment of different degrees:  

2. Monotonicity 

 

 

 

 To be useful as a calibration function, a function generally must be 
strictly monotonic over the interval over which it is defined and to be 
used  

 

 Simple (but not infallible) approach to check monotonicity  

• Generate large number of uniformly-spaced points over the interval 
of stimulus values  

• Evaluate calibration function at those points 

• Check if function values form an increasing or decreasing set  

 

 Rigorous approach can be applied for a calibration function expressed 
in terms of Chebyshev polynomials  

 

 

 



Polynomial degree unknown in advance 

Assessment of different degrees:  

3. Model-selection criteria 

 

 

 

 Generic approach 

• Fit polynomial functions of increasing degree 

• For each function, calculate a goodness-of-fit measure 

• Use values of goodness-of-fit measure to select polynomial degree  

 

 A common goodness-of-fit measure is the chi-squared statistic 𝜒obs
2  

• Essentially the sum of squares of weighted residuals  

 

 Other model-selection criteria can be used that provide a balance 
between goodness of fit and simplicity of model  

 

 

 



Polynomial degree unknown in advance 

Assessment of different degrees:  

3. Model-selection criteria 

 

 

 

 Akaike’s Information Criterion (AIC)  

 
AIC 𝑛 = 𝜒obs

2 𝑛 + 2(𝑛 + 1) 

 

 Corrected AIC (AICc) 

 

AICc 𝑛 = AIC 𝑛 +
2(𝑛 + 1)(𝑛 + 2)

𝑚 − 𝑛 − 2
 

 

 Bayesian Information Criterion (BIC)  

 
BIC 𝑛 = 𝜒obs

2 𝑛 + 𝑛 + 1 ⁡ln⁡𝑚 

 

 For a selected criterion, choose degree that returns the smallest value 
of that criterion  

 



Polynomial degree unknown in advance 

Assessment of different degrees:  

3. Model-selection criteria 

 

 

 

 Example: Optical density as a function of absorbed dose 

 

 Absorbed dose 𝒙 Net optical density 𝒚 𝒖(𝒚) 

0 0.0004 0.0017 

65 0.0812 0.0016 

130 0.1440 0.0017 

195 0.1957 0.0020 

260 0.2437 0.0020 

325 0.2840 0.0024 

390 0.3201 0.0024 

455 0.3499 0.0026 

520 0.3829 0.0026 

585 0.4100 0.0029 

650 0.4353 0.0029 

715 0.4543 0.0031 



Polynomial degree unknown in advance 

Assessment of different degrees:  

3. Model-selection criteria 

 

 

 

 Example: Optical density as a function of absorbed dose 

 

 
Degree 𝒏 𝝌𝐨𝐛𝐬

𝟐 (𝒏) AIC AICc BIC 

1 1836.5 1840.5 1841.9 1841.5 

2 109.5 115.5 118.5 117.0 

3 16.2 24.2 30.0 26.2 

4 3.0 13.0 23.0 15.4 

5 2.7 14.7 31.5 17.6 

6 1.3 15.3 43.3 18.7 

7 1.0 17.0 65.0 20.9 

8 0.8 18.8 108.8 23.2 



Polynomial degree unknown in advance 

Assessment of different degrees:  

3. Model-selection criteria 

 

 

 

 Example: Optical density as a function of absorbed dose 

 

 
Degree 𝒏 𝝌𝐨𝐛𝐬

𝟐 (𝒏) AIC AICc BIC 

1 1836.5 1840.5 1841.9 1841.5 

2 109.5 115.5 118.5 117.0 

3 16.2 24.2 30.0 26.2 

4 3.0 13.0 23.0 15.4 

5 2.7 14.7 31.5 17.6 

6 1.3 15.3 43.3 18.7 

7 1.0 17.0 65.0 20.9 

8 0.8 18.8 108.8 23.2 



Conclusions 

 Numerically stable approaches to determine polynomial calibration 
functions for different uncertainty structures are well-known  

 

 Various metrology applications require determination of a polynomial 
calibration function where the polynomial degree is unknown a priori 

 

 Approaches that allow suitability of different polynomial degrees to be 
assessed  

• Visual inspection  

• Monotonicity 

• Model-selection criteria  

 

 Educational issue – understanding of Chebyshev representation  
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