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OBJECTIVES 

To compare GUF (GUM Uncertainty Framework), MCM 

(Monte Carlo Method) and Bayesian approach 

 

 mass calibration JCGM 101:2008 : no measurements 

but a best estimate and its associated uncertainty 

 

 mass calibration revisited : 𝑵 measurements collected 

during a calibration process 
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MASS CALIBRATION EXAMPLE 

Mass calibration example 

according to JCGM 101:2008 



• δm : measurand: deviation of 𝑚W,c from the nominal mass 

• δ𝑚R,c : deviation from reference conventional mass known either from measurements or 

a best estimate and its associated uncertainty 

• 𝑚R,c : conventional reference mass 

• 𝐶 = 1 + 𝜌a − 𝜌a0
1

𝜌W
−
1

𝜌R
 : correction 

• 𝑚nom : nominal mass 

• 𝜌a0 = 1.2 kg/m
3 , 𝜌𝑎 : mass density of air 

• 𝜌W, 𝜌R: mass density of resp. the weight W and reference weight R 

MASS CALIBRATION EXAMPLE: CALIBRATION OF A WEIGHT W AGAINST A REFERENCE WEIGHT R 

Measurement model 
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δm = 𝑚W,c −𝑚nom = 𝑚R,c + δ𝑚R,c 1 + 𝜌a − 𝜌a0
1

𝜌W
−
1

𝜌R
−𝑚nom 

δm = 𝐶 𝑚R,c + δ𝑚R,c −𝑚nom 



FROM THE MEASUREMENT MODEL TO THE STATISTICAL MODEL 

Notations and modelling in the GUM framework 
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measurement model of the form 𝑌 = 𝑓 𝑋  
𝑌 the measurand, 𝑋 the input quantities, 𝑓 the measurement model 

Notations and statistical modelling 

𝜂 the measurand,  

𝜉 the input quantity usually associated with measurements, 

𝜃 the other input quantities, 

𝜉 = 𝑔 𝜂, 𝜃 + 𝜀 
Assumptions: 𝜀 ∼ 𝑁(0, 𝜎2), 
one-to-one correspondance between 𝜉 and 𝜂 



STATISTICAL MODEL 
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𝜉 = δ𝑚R,c 
𝜂 = δm 

𝜃 = (𝜌a, 𝜌W, 𝜌R, 𝑚R,c) 

𝐶(𝜃) = 1 + 𝜌a − 𝜌a0
1

𝜌W
−
1

𝜌R
 

𝐷(𝜃) = 𝐶 𝜃 𝑚R,c −𝑚nom 

Statistical model δ𝑚R,c =
𝛿m

𝐶
− 
𝐶𝑚R,c−𝑚nom

𝐶
+ 𝜀,  𝜀 ∼ 𝑁(0, 𝜎2) 

Correspondance with the model 𝜉 =
𝜂−𝐷(𝜃)

𝐶(𝜃)
+ 𝜀 



MASS CALIBRATION EXAMPLE IN JCGM 101 

Posterior distribution under non informative prior 𝝅 𝜹𝒎 ∝ 𝟏 
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𝜋 𝛿𝑚 𝑑, 𝜃 ∝
1

𝑠2
1
2

exp−
1

2𝐶2𝑠2
𝜇 − 𝑚 2  

 where  𝑚 =  𝐶𝑑 + 𝛿 and 𝜃 = (𝐶, 𝛿), 𝑑 is a best estimate with assoc. 

uncertainty 𝑢 𝑑 = 𝑠 (𝜎2 = 𝑠2) 
 

Propagation of uncertainty: 

Gaussian distribution 

𝜋 𝛿𝑚 𝑑 ∝ ∫
1

𝑠2
1
2

exp−
1

2𝐶2𝑠2
𝜇 − 𝑚 2𝑑𝜃 

marginal  

posterior  

distribution 



COMPARISON OF RESULTS FOR THE MASS CALIBRATION EXAMPLE IN 

JCGM 101 

Results 
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Bayes-NI 𝛿𝑚 = 1.233 95 mg, 𝑢 𝛿𝑚 = 0.075 37 mg  

 𝑑𝑙𝑜𝑤 = 1.084 55 mg, 𝑑ℎ𝑖𝑔ℎ = 1.382 97 mg 

Similar results for LPU2, MCM and the Bayesian approach 



COMPARISON OF RESULTS FOR THE MASS CALIBRATION EXAMPLE IN 

JCGM 101 
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COMPARISON BETWEEN GUMS1 ASSUMPTIONS AND STATISTICAL 

MODELLING ASSUMPTIONS 
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Mass calibration example in the 

general case 

Mass calibration example 

according to JCGM 101 

 𝜎2 unknown (to be estimated) 

 

 𝑁 measurements 𝑑1, … , 𝑑𝑁 

 𝜎2 known (𝜎2 = 𝑠2) 
 a best estimate 𝑑 and its  

associated uncertainty 𝑢(𝑑) 

Warning In mass calibration 

example from JCGM 101, 

type B uncertainty evaluation 

(no measurements) 

Warning In the following, 

adaptation of the mass 

calibration example to the 

case where measurements 

are available 
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MASS CALIBRATION EXAMPLE 

Mass calibration example 

in the general case 



ADAPTATION OF THE MASS CALIBRATION EXAMPLE IN THE GENERAL 

CASE 
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Posterior distribution for the conjugate case 

arising from the integration over 𝜎2 

Conjugate prior: 𝛿𝑚 ∼ 𝑁 𝜂0,
𝜎2

𝜅0
, 𝜎2 ∼ 𝐼𝑛𝑣 − 𝑐ℎ𝑖2(𝜈0, 𝑠0

2) 

Posterior: 



EFFECT OF PRIOR PARAMETERS ON THE POSTERIOR DISTRIBUTION IN 

THE CONJUGATE CASE 
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EXAMPLES OF NON CONJUGATE PRIOR DISTRIBUTIONS 

Unbounded prior distributions 

  Gaussian 
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𝜋 𝜂|𝜎2 ∝
1

𝜎0
2
1
2

exp−
1

2𝜎0
2 𝜂 − 𝜇0

2 

Bounded prior distributions on [a,b] 

 Truncated Gaussian distribution 

 Uniform distribution 



EFFECT OF NON CONJUGATE PRIOR ON THE POSTERIOR 

DISTRIBUTION 
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Bounded prior  bounded posterior ! 

Uniform prior Truncated normal prior 



CONCLUSION 
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 Similar results for LPU, MCM and Bayes (with noninformative prior) can be 

reached for the mass example when sigma is known, but  

 

 Bayes allows to incorporate prior knowledge about the measurand which can 

improve that result (i.e. sharpen the posterior) significantly, 

 

 Care needs to be taken when assigning an informative prior as that can be 

quite influential (see observed significant sensitivities),  

 

 In general: Bayes provides a flexible tool for statistical modeling, achieves 

added value through prior info, at some computational price 

 

 Demonstrator of this application under development at LNE, available in 2020 
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Thank you for your attention 



STATISTICAL MODEL 

General form of models considered 
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𝜉 =
𝜂 − 𝐷(𝜃)

𝐶(𝜃)
+ 𝜀 

 

𝜀 ∼ 𝑁(0, 𝜎2) 

Similar to the problem of estimating the mean of a Gaussian distribution  

2 cases are usually considered: 

 𝝈𝟐 known  

 𝝈𝟐 unknown (general case) 



LIKELIHOOD & PRIOR 

Case 𝝈𝟐 unknown 
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𝑙 𝑑 𝜂, 𝜎2, 𝜃 ∝
1

𝜎2

𝑁

1
2

exp −
1

2
𝐶2𝜎2

𝑁

𝜂 −𝑚𝑁
2 ×

1

𝜎2
𝑁−1
2

exp −
𝑁 − 1 𝑆𝑁

2

2𝜎2
 

A prior conjugate with the likelihood is of the form 

𝜋 𝜂|𝜎2 ∝
1

𝜎2

𝜅0

1
2

exp−
1

2
𝜎2

𝜅0

𝜂 − 𝜇0
2, 𝜋 𝜎2 ∝ 𝐼𝑛𝑣 − 𝐶ℎ𝑖2 𝜈0, 𝑠0

2  

Inverse Chi2 distribution Gaussian distribution 
where  𝑚𝑁 =  𝐶𝑑 + 𝛿  
𝑑  is the sample mean, 𝑠𝑁

2  is the sample variance, 𝑁 is the sample mean  



LIKELIHOOD & PRIOR 

Case 𝝈𝟐 known (𝝈𝟐 = 𝒔𝟐)  
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𝑙 𝑑 𝜂, 𝜃 ∝
1

𝑠2

𝑁

1
2

exp−
1

2𝐶2𝑠2

𝑁

𝜂 − 𝑚𝑁
2  

 where  𝑚𝑁 = 𝐶𝑑 + 𝛿,  

𝜋 𝜂|𝜎2 ∝
1

𝜎0
2
1
2

exp−
1

2𝜎0
2 𝜂 − 𝜇0

2 

A prior conjugate with the likelihood is of the form 

Remark: 𝑑 is a best estimate with assoc. uncertainty 𝑢 𝑑 = 𝑠, set 𝑁 = 1  



POSTERIOR DISTRIBUTION OF THE MEASURAND  
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Monte Carlo integration on 𝜃 

Analytical formulas MCMC simulations 

Non informative  

prior distributions 

Conjugate 

prior distributions 

𝜋 𝜂 𝑑 = ∫ ∫ 𝑙 𝑑 𝜂, 𝜎2, 𝜃 𝜋 𝜂, 𝜎2 𝜋 𝜃 𝑑𝜎2𝑑𝜃 

Non conjugate 

prior distributions 

likelihood likelihood 

Choice of prior 

distribution 𝜋 𝜂, 𝜎2   

𝜋 𝜂, 𝜎2, 𝜃 𝑑  

𝑙 𝑑 𝜂, 𝜎2, 𝜃  


