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MASS CALIBRATION EXAMPLE

Mass calibration example
according to JCGM 101:2008




MASS CALIBRATION EXAMPLE: cALIBRATION OF A WEIGHT W AGAINST A REFERENCE WEIGHT R

1 1
Measurement model 6., =mwe—mpom = (Mg + dmp,) (1 + (pa — Pay) (p— - p—)) — Myom
W R

Om = C(mR,c + SmR,c) — Mpom

O, - measurand: deviation of myy . from the nominal mass

dmp . : deviation from reference conventional mass known either from measurements or
a best estimate and its associated uncertainty

mg ¢ - conventional reference mass

C=1+ (pa — pao) (i — i) : correction

Pw PR

* Mpom - NOMinal mass

Pa, = 1.2 kg/m3 , p, : mass density of air

Pw, Pr- Mass density of resp. the weight W and reference weight R
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FROM THE MEASUREMENT MODEL TO THE STATISTICAL MODEL

measurement model of the form Y = f(X)
Y the measurand, X the input quantities, f the measurement model

n the measurand,

¢ the input quantity usually associated with measurements,
6 the other input quantities,

§=9,0)+¢
Assumptions: € ~ N(0,0?),
one-to-one correspondance between ¢ and n




STATISTICAL MODEL

- Sm  CMRc—
Statistical model 8mg c = —* — mR'CCm“"m +¢& &~ N(0,02%)

n—D(0)
C(6)

Correspondance with the model § = + &

5 — 6TnR,c
n=06n
0 = (,Da; Pw, PR, mR,C)

1 1

C(0) = 1+(Pa—Pa0)<E—E>

D) = C(H)mR,c — Mpom




MASS CALIBRATION EXAMPLE IN JCGM 101

m(8,,]d, 0) «

1 2 ) ) ) .
. (u—m) Gaussian distribution

where m= Cd+ 6 and 8 = (C,6), d is a best estimate with assoc.
uncertainty u(d) = s (6% = s?)

Propagation of uncertainty:

marginal 1 1
posterior 7 (8mld) o 1€XP 50252 (u —m)*de
distribution (s?)2




COMPARISON OF RESULTS FOR THE MASS CALIBRATION EXAMPLE IN
JCGM 101

Table 6 — Results of the calculation stage for the mass calibration model (B.3.2.1] 0.3.2.6)

Method  &m u(bm) Shortest 95 % Ao dhigh ~ GUF validated
/mg /mg coverage interval /mg /mg /mg (4 = 0.005)7

GUF; 1L.234 0 0.053 9 [1.128 5, 1.330 5] 00451 00430 No

MCM 1.2341 0.075 4 [1.083 4, 1.382 5]

GUF:2 1.234 0 0.075 0 [1.087 0, 1.381 0] 0.0026  0.0015 Yes

Bayes-NI &,,, = 1.233 95 mg, u(5,,,) = 0.075 37 mg
djow = 1.084 55 mg, dp;4sn = 1.382 97 mg

W)  Similar results for LPU2, MCM and the Bayesian approach




COMPARISON OF RESULTS FOR THE MASS CALIBRATION EXAMPLE IN

JCGM 101
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COMPARISON BETWEEN GUMS1 ASSUMPTIONS AND STATISTICAL
MODELLING ASSUMPTIONS

Mass calibration example Mass calibration example in the
according to JCGM 101 general case
= g2 known (o2 = s?) = g2 unknown (to be estimated)
= a best estimate d and its
associated uncertainty u(d) = N measurements dq, ..., dy

Warning In the following,
adaptation of the mass
calibration example to the
case where measurements
are available

Warning In mass calibration
example from JCGM 101,
type B uncertainty evaluation
(no measurements)
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MASS CALIBRATION EXAMPLE

Mass calibration example
In the general case
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ADAPTATION OF THE MASS CALIBRATION EXAMPLE IN THE GENERAL
CASE

2
Conjugate prior: 6,, ~ N (nO,Z—) ,0% ~ Inv — chi2(vy, s3)
0

;2

Ky (6)

Posterior: = m(ém|d) :::-r-:J. [N+, (ﬁm ny(8), )ﬂ:(E—']dE'

arising from the integration over o2

1 N )
Iy = @ (@™ + Koo

kN 2 2 2
KNC[S'}E(?]N_HD} +(N_1}3N+VDSD
N+V|:|

N
KN(Q) — C(0)2 + Ko

=2
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EFFECT OF PRIOR PARAMETERS ON THE POSTERIOR DISTRIBUTION IN
THE CONJUGATE CASE

o _]
™
--=- prior nu0=4, kappa0=8
QT ---  prior nu0=4, kappa0=1
- posterior distribution
8 — — posterior distribution
2 — Bayes-NI
g v _
[0
(o) o _
LD —
C) —

mass difference (mg)
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EXAMPLES OF NON CONJUGATE PRIOR DISTRIBUTIONS
Unbounded prior distributions

1 1
exp ——=

m(n]o?) « (1 — to)?

Bounded prior distributions on [a,b]
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EFFECT OF NON CONJUGATE PRIOR ON THE POSTERIOR

Uniform prior Truncated normal prior
o o —
= -~ truncated normal (TN prior o | | - - - fruncated normal (TN} prior
posterior under TH prior - — posterior under TH prior
w —— posterior under NI prior o ] —— posterior under NI pricr
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CONCLUSION

= Similar results for LPU, MCM and Bayes (with noninformative prior) can be
reached for the mass example when sigma is known, but

= Bayes allows to incorporate prior knowledge about the measurand which can
improve that result (i.e. sharpen the posterior) significantly,

= Care needs to be taken when assigning an informative prior as that can be
quite influential (see observed significant sensitivities),

» |n general: Bayes provides a flexible tool for statistical modeling, achieves
added value through prior info, at some computational price

= Demonstrator of this application under development at LNE, available in 2020
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Thank you for your attention
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STATISTICAL MODEL

_n—D(6)
C(9)

+ &£

e ~N(0,0%)

Similar to the problem of estimating the mean of a Gaussian distribution
2 cases are usually considered:
= g2 known

= o2 unknown (general case)
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LIKELIHOOD & PRIOR

1 1 1 (N — 1)S2
[(d|n,0%,0) « T eXp —W(n—m,v)z XWGXP{— P N}
@) L2 T
N

where my = Cd + 6
d is the sample mean, s3 is the sample variance, N is the sample mean

Gaussian-distribution Inverse-Chi2-distribution

A prior conjugate with the likelihood is of the form

n(n|o?) <« —sexp —% (1 — po)?, m(o?) o Inv — Chi2(vy, s§)
2

& =
Ko
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LIKELIHOOD & PRIOR

1 1
l(le], 6) o8 1€XP —S 22 (77 —mN)2

GF_ "

where my = Cd + 6,

Remark: d is a best estimate with assoc. uncertainty u(d) = s, set N =1

A prior conjugate with the likelihood is of the form

1
7exp —5— (1 — po)?

n(n|o?) o«
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POSTERIOR DISTRIBUTION OF THE MEASURAND

Non informative Conjugate Non conjugate _ Choige of pI’iOI’Z
prior distributions prior distributions prior distributions distribution 7(n, o)
likelihood likelihood I(d|n, 52, 6)
Analytical formulas MCMC simulations m(n,02,0|d)

Monte Carlo integration on 6

n(nld) = [ [1(d|n, o2,0)n(n, 0®)n(6)da?do
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