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Straight line regression in

err§-|n Varlab es (EIV) models @PTB

/'gZ = Po+ P& |=—=> (yi,0y.i)
X [m,am,j) =

« Npairs (z,,y)"' of independent z, | +
and dependent variables y, Y
>:1- + /"'
(la) z; =& + €3, #
(1b) yi = Bo + B1&i +€y.i /7‘}_
« is a common task in metrology including "’ ' :

» calibration procedures
» method comparision studies

[1] https://primosensor.de/produkt/ind4r13-digitalanzeige/
[2] https://nordiclifescience.org/wp-content/public_html/2018/05/lab-e1526288478439.jpg 5



Straight line regression in

Errors-in-Variables (EIV) models EEPIB

= Po + 51& I:> y,“o'yi
fl B )

(fEi,U;c,z')

_+_]-57y p

« Npairs (z;,y)" of independent z,

and dependent variables g, " stand. meas. “”Ce”a'”ty T
= stand. meas. uncertainty 0,“
= access correlation p,
(la) @ =& + €z, - v
(Ib) y; = Bo + P1&i + €y I S ‘
e assumptions: ° . ’

a) errors of i-th measurement are drawn from a
zero-mean, multivariate Gaussian distribution

with i-th covariance 9
» 04 PiO0x,i0y,i
) ( ’ 2 )

1O 04 4 g, .
b) X, are known PiTa,iTy v

ISO/TS 28037:2010(E), Determination and use of straight-line calibration functions.



Goal and open questions @PTB

 Goal: Find best estimates and their uncertainties

/807 /819671 3 uﬁo’u/él’uéi’Uﬁojél,é
* numerous approaches exist:

> least-squares (LS)!2 methods » maximum likelihood estimators *]

« weighted TLS (WTLS) > instrumental variables!®!
o Deming regressionl®! > methods-of-moments!’]
o ordinary LS (OLS) etc.

> Bayesian regression!*°]

[1] Adcock The Analyst 4, 183 (1877); 5, 53 (1878), [2] Pearson Philos Mag. 2, 559 (1901)
[3] W. E. Deming ,Statistical adjustment of data“ (1943), [4] Zellner ,An Introduction to Bayesian Inference Econometrics® (1971)
[5] Carroll et al. ,Measurement errors in Nonlinear models” (2006), [6] 9 M. Y: Wong Biometrika 76, 141 (1989),
[7] Pal J. Econometrics 14, 349 (1980)
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Goal and open questions @PTB

« Goal: Find best estimates and their uncertainties
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« weighted TLS (WTLS)

o ordinary LS (OLS)
> Bayesian regressionl*°! 4o <5 0o 05 1o

intercept By

 GUM documents advise uncertainties assessment based on
1) propagation of uncertainties — GUF (GUMU, GUM-S212])

[1] JCGM 100:2008, [2] JICGM 102:2011, [3] JCGM 101:2008



Goal and open questions ‘a'PTB

Goal: Find best estimates and their uncertainties

/807 /617 g’L ) u,(-}AO ) uﬁl » € e I
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slope B4

numerous approaches exist

0.5 =

> least-squares (LS)*?I methods “o ®s o0 05 10
intercept Bo
. weighted TLS (WTLS) p

959% coverage interval

o ordinary LS (OLS)
> Bayesian regressioni5! 75 o5 oo o5 1o

intercept By
GUM documents advise uncertainties assessment based on
1) propagation of uncertainties — GUF (GUM!, GUM-S2[2))
2) propagation of distributions — MC methods (GUM-S18l, GUM-S2[2])

marginal PDF p(Bo)

GUM documents do not give guidance for regressions problems

[1] JCGM 100:2008, [2] JICGM 102:2011, [3] JCGM 101:2008



Straight line regression in EIV models EEPIB

K multiple standards recommend minimization of WTLS!! functional \

A

G ~ x; — & 5
. _ . i — & 0
(E> - ar§f1§1nZViTEi Vi withvi = (yi — Bo — 51&‘) 6= (51)

i=1

Q in general, only numerical approaches can be used

[ uncertainties might depend on chosen algorithm!?]

O Does an uncertainty evaluation acc. to GUF and MC methods

\ provide similar results for point estimates and their uncertainties’?/

( )
- often, usage of OLS justified by , o, ; is small compared to o, ;* I°!
O Under what conditions does OLS deliver valid results? )
« Bayesian inference is generally applicable and more flexible h
O When and whether Bayesian inference with prior knowledge
L has advantages in comparison to MC methods? )

[1]ISO/TS 28037:2010, ISO 28038:2018, ISO 6143:2011; [2] M. Krystek and M. Anton, Meas. Sci. Technol.
22,035101 (2011); A Balsamo et al, Metrol. 43, 396 (2006); [3] ISO 11095:1996
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Validity of OLS in EIV models EEPIB

« OLS point estimate is biased and inconsistent

Reasonable conditions for usage of OLS:

1. Deviation of estimator from true value must be compatible with
the estimator’s uncertainty.

(22)  Var (BloLS,EIV) > (E (BloLS,EIV) B 51)2

5 (IgloLS,EIV) 5
=

i i

!

\/Var (31OLS,EIVE

/ \'K¥

PDF p(B+)




Validity of OLS in EIV models EEPIB

« OLS point estimate is biased and inconsistent

Reasonable conditions for usage of OLS:

1. Deviation of estimator from true value must be compatible with
the estimator’s uncertainty.

(22)  Var (BloLS,EIV) > (E (BloLS,EIV) B 51)2

2. The uncertainty of the estimator should not be underestimated.
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Validity of OLS in EIV models EEPIB

« OLS point estimate is biased and inconsistent

Reasonable conditions for usage of OLS:

1. Deviation of estimator from true value must be compatible with
the estimator’s uncertainty.

(22)  Var (BloLS,EIV) > (E (BloLS,EIV) B 51)2

2. The uncertainty of the estimator should not be underestimated.

(2b) \/V&I’ (BloLS’EIV) < u6~10LS

* Inhomosc. EIV (0,=0,, 0,= 0,;,, p=p), point estimates are

asymp. normally distributed X! and closed expressions
~ OLS,EIV ~ OLS,EIV

forE (61 ) and Var (61 )exist

[1 Gleser et al., Ann. Stat. 15, 220-233 (1987)



Validity of OLS in EIV models

p=0.8 p=0.05
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Validity of OLS in EIV models EEPIB

p=0.38 p=-0.8
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uncertainty condition (2b) is obeyed
o _ 18] (am/o@, sgn(Bup) = —1
of" Ip| 10.5(0x/0¢), sgn(Bip) =1




Validity of OLS in EIV models EEPIB
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» |Justification , o, ;is small compared to g, “Is not sufficient
» in general, OLS cannot be recommended for EIV models
especially if sgn (pf1) = —1

[1l example H.3 in JCGM 100:2008; OIML R 111-1 e04



Straight line regression in EIV models EEPIB

K multiple standards recommend minimization of WTLS!! functional \

A

B s x; — & 5
. i . i — & 0
(5) ] argfglnzvgzi v (?Jz’ — Do — 51&‘) - (51)

i=1

O in general, only numerical approaches can be used

O uncertainties might depend on chosen algorithm!?!

O Does an uncertainty evaluation acc. to GUF and MC methods

\ provide similar results for point estimates and their uncertainties’?/

( )
- often, usage of OLS justified by , o, ; is small compared to o, ;* I°!
O Under what conditions does OLS deliver valid results? )
« Bayesian inference is generally applicable and more flexible A
O When and whether Bayesian inference with prior knowledge
L has advantages in comparison to MC methods? )

[1]ISO/TS 28037:2010, ISO 28038:2018, ISO 6143:2011; [2] M. Krystek and M. Anton, Meas. Sci. Technol.
22,035101 (2011); A Balsamo et al, Metrol. 43, 396 (2006); [3] ISO 11095:1996



GUF vs. MC methods for WTLS @PTB

+ multivariate measurandY = (8y, 81, &)
N T
3 - i = &i -1 i — &
Y = argmin P 3
; Z: (y@' — Bo — 51&) : (yi — By — 51&:)
5076136 1=1
« evaluation of argmin leads to set of N+2 implicit normal equations

h(X,Y) =0, with input quantities X = (z1,91,...,ZnN, yN)T

« supplement 2 to GUM (6.3) discusses this class of problems



GUF vs. MC methods for WTLS PTB

« perform extensive numerical simulations
* generate ,synthetic data“ according to stat. model (1a) - (1b)

{10, 100} {-0.8,0,0.8}  {1%, 5%, 10%, 25%}

» for each combination
N,., =1000 data sets + Ng; = 5 10* S1 sub-samples (Monte-Carlo)

« perform uncertainty evalutation accord. to GUF and MC methods



GUF vs. MC methods for WTLS @PTB
« |SO 28037 applies LPU to linearized problem (Gauss-Newton)

1) coverage interval (Cl) and frequentist coverage:

* 95% coverage intervals acc. to GUF yield 95% frequentist coverage
 MC method provides slightly longer mean CI's length

o effect strengthens with growing values for (o, ; o, )

2) point estimates:

* GUF: point estimates are unbiased

« MC method gives slightly larger estimates for g, and
slightly smaller ones for 5, — larger RMSEs

o with growing N, difference between GUF and MC lessens

[11SO/TS 28037:2010 (E), Determination and use of straight-line calibration functions.



GUF vs. MC methods for WTLS @PTB
« |SO 28037 applies LPU to linearized problem (Gauss-Newton)

1) coverage interval (Cl) and frequentist coverage:

* 959% coverage intervals acc. to GUF yield 95% frequentist coverage

 MC method provides slightly longer mean CI's length

4 N
» recommend I1SO 28037:2010 WTLS implementation

2) | » advise uncertainties evaluation acc. to the simpler
propagation of uncertainties (GUF) approach

/

« MC method gives slightly larger estimates for g, and
slightly smaller ones for 5, — larger RMSEs

o with growing N, difference between GUF and MC lessens

[111SO/TS 28037:2010 (E), Determination and use of straight-line calibration functions.



Straight line regression in EIV models EEPIB

K multiple standards recommend minimization of WTLS!! functional \

A

B - r; — & 5
(&) g eoran w5 5 ) 0= ()

i=1

Q in general, only numerical approaches can be used

[ uncertainties might depend on chosen algorithm!?]

O Does an uncertainty evaluation acc. to GUF and MC methods

\ provide similar results for point estimates and their uncertainties’?/

( )
- often, usage of OLS justified by , o, ; is small compared to o, ;* I°!
O Under what conditions does OLS deliver valid results? )
« Bayesian inference is generally applicable and more flexible 1
O When and whether Bayesian inference with prior knowledge
L has advantages in comparison to MC methods? )

[1]ISO/TS 28037:2010, ISO 28038:2018, ISO 6143:2011; [2] M. Krystek and M. Anton, Meas. Sci. Technol.
22,035101 (2011); A Balsamo et al, Metrol. 43, 396 (2006); [3] ISO 11095:1996



Bayesian regression EEPIB

. following Bayes' theorem, posterior for measurands 8 = (5o, 31,& ")
p(0@ldata) o« mo(0) L(0; data)
with prior m(8), likelihood £(0;data), and given ¥ = diag (Z1,...,Zy)

« assign flat prior to &: m(6) = mo(8)mo (&) x mo(3)
WTLS est. = ML est.

N o . _ 2
p(Bldata) o wo(8) [ oty (B1) exp ( (1 = fo — frins) )
1=1

2
‘ : 2O-eﬂ:,i

J

I
MAP est. for g, # WTLS est.

2 2 2 2
Ooff i (51) = Oy — 2/0@'%,@'%,@'51 + 51%,@



Bayesian regression EEPIB

» select multivariate Normal prior for g

m0(8) o< exp (—% (B—ps) VH(B- wﬂ)  With prg = (Zgo) . V = diag(af,, 03,)

» closed expressions for marginal distributions can be derived

10



Bayesian regression EEPIB

» select multivariate Normal prior for g

(8) o exp (~5 (8= s) V(B ) ) withpsy = (A2 )V = dingl03, 03,

» closed expressions for marginal distributions can be derived

95% HI?D region

1.5
2.0
1.2
-
(en
> Y v B -
1.5 g 0.9
% 2 I — ISO-MCM
0.6 !
1077 ' I
T T T T ! T
1.0 1.5 2.0 -0.5 0.0 0.5

intercept By

I><

95% CIl | LS estimate

ISO — MCM
B, (-0.48,0.65)
B, (0.58,1.33)

Bayesian inference with normal prior

10



Bayesian regression EEPIB

» select multivariate Normal prior for g
1 _ . .
70(B) o exp (—5 (6 us) V(B - uﬁ)) with p = (“ﬂo) V= ding(0?,.02)

F1
» closed expressions for marginal distributions can be derived
» set (MB07M61)T = (0, l)T and (0'?30, O'?gl)—r =q (UEOISO—MCMguglISO—MCM)T

95% HI?D region

Py 1.5
2.0 A 124
4 <L -
> 151 2 0.9
/% - | — ISO-MCM
I — Bayes -1
1.0 0.6 |
|
1T0 1j5 2TO -OI.5 OTO Oj5
X intercept 3o
95% CI | LS estimate Bayesian inference with normal prior
ISO — MCM g=1
B, (-0.48,0.65) (-0.22,0.43)

B (0.58,1.33) (0.71,1.15)

10



Bayesian regression EEPIB

» select multivariate Normal prior for g
1 _ . .
(8) o exp (~5 (8= s) V(B ) ) withpsy = (A2 )V = dingl03, 03,

F1
» closed expressions for marginal distributions can be derived
» set (/iﬁ’oa/i&)—r = (0, l)T and (0'?30, U?gl)—r =q (UEOISO—MCMguglISO—MCM)T

95% HI?D region

y 1.5
2.0 1 ‘
-2‘/ 1.2 7

+/ %H _ _

> 151 4 2 0.9

+ 74 < | — ISO-MCM

¥ | -— Bayes =1

104 0-67 I — = Bayes q=0.01
d |
1T0 1j5 2TO -OI.5 OTO Oj5
X intercept 3o
95% CI | LS estimate Bayesian inference with normal prior

ISO - MCM g=0.01 g=1

B (-0.48,0.65) (-0.05,0.05) (-0.22,0.43)
B (0.58,1.33) (0.97,1.03) (0.71,1.15)

10



Bayesian regression EEPIB

» select multivariate Normal prior for g
1 _ . .
(8) o exp (~5 (8= s) V(B ) ) withpsy = (A2 )V = dingl03, 03,

F1
» closed expressions for marginal distributions can be derived
» set (/iﬁ’oa/i&)—r = (0, l)T and (0'%0, U?gl)—r =q (UEOISO—MCMguglISO—MCM)T

95% HI?D region
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2.0 ‘
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109 o 0-67 I . | = = Bayes q=0.01
v I T - - Bayes q=1000
1T0 1j5 2TO -OI.5 OTO Oj5
X intercept 3o
95% CI | LS estimate Bayesian inference with normal prior
ISO — MCM g=0.01 g=1 g=1000

B, (-0.48,0.65) (-0.05,0.05) (-0.22,0.43) (-0.23,0.72)
B, (0.58,1.33)  (0.97,1.03) (0.71,1.15)  (0.52,1.15)

10



Conclusion @PTB

M present generic treatment of straight line regression | _;ir_"
in EIV models %
>1. + /"'
. . . . ’*/
M validity of OLS point estimates +
* ,0,;1s small compared to g, ;* is not sufficient .
- especially, OLS cannot be recommended for EIV models if sgn(pfi) = —1

M uncertainty evaluation acc. to GUF or MC methods for WTLS point estimates
« advise uncertainty evaluation acc. to simpler GUF (LPU) approach

* recommend ISO 28037 implementation

M Bayesian inference with an informative prior

* Isto be preferred if sufficient prior knowledge is available

11



Conclusion @PT

M present generic treatment of straight line regression | _;ir_"
in EIV models Y
>1. +‘/"'
. . - . ’*-/
M validity of OLS point estimates +
* ,0,,;Is small compared to o, ;" is not sufficient . ,
- especially, OLS cannot be recommended for EIV models if sgn(pfi) = —1

M ur Straight line regression in errors-in-variables models ites
. — Comparison between the application of the GUM
with its supplements and Bayesian analyses

Steffen Martens'!, Katy Klauenberg', Maurice G. Cox?,

M B: Alen Bosnjakovié®, John Greenwood?, Adriaan M. H. van

der Veen’, and Clemens Elster!

under revision
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Conclusion @PT

M present generic treatment of straight line regression ] _;i(_"
; .
in EIV models e
>‘1- +‘/"'
. , _ #
M validity of OLS point estimates +
* ,0,,;Is small compared to o, ;" is not sufficient |
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