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Introduction

Correlations (dependencies) between quantities arise when they depend
on (at least) one other joint quantity

It is essential to evaluate covariances as part of the evaluation of
measurement uncertainty

Ignoring covariances is the same as setting them to zero . . .

. . . which may lead to serious over- or understating the measurement
uncertainty
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A simple case

A calibrated volt meter is used to measure two voltages which are to be
used in a subsequent calculation. What is the covariance between the two
voltages?

V1 = δVcl + V̄ind,1
V2 = δVcl + V̄ind,2

We assume the indications as independent and identically distributed (IID).

The only common variable in the two measurement equations is δVcl, so
according to equation (F.2) in the GUM, (V1, V2) = 2(δVcl)

The correlation coefficient is evaluated as r(V1, V2) =
2(δVcl)

(V1)(V2)
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Generalisation to multiple common quantities

If there are multiple common input quantities,

(X1, X2) =
∑



∂F

∂Q

∂G

∂Q
2(Q)

where F and G are the measurement equations relating X1 and X2 to the
input quantities Q;

only terms for which both partial derivatives are non-zero contribute (i.e.,
the ones concerning the common quantities).

See also JCGM 100:2008 clause F.1.2
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Buoyancy effect on a permeation tube in a chamber flushed
with high-purity nitrogen

Measurand of interest: permeation rate ṁ = qm = dm/dt

Buoyancy effect used to model temperature and pressure influence on
weighing results

Buoyancy effect modelled as

δmbo = Vtbeδρ where ρ =
M̄

Vm

Molar volume of high-purity nitrogen Vm computed using a cubic
polynomial (Soave-Redlich-Kwong equation-of-state)
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Use of the Soave-Redlich-Kwong equation-of-state

Equation-of-state can be formulated as

V3m + α1V
2
m + α2Vm + α3 = 0

where

α1 = −
RT

p
;α2 = −b2 −

RT

p
b +



p
;α3 = −

b

p
and  and b are coefficients dependent on, among other, the critical
temperature and pressure.

Propagation of uncertainty can be performed using the law of propagation of
uncertainty from GUM-S2 for (multivariate) implicit measurement models,
enabling including the correlations between the α, i.e.,

2(Vm) =
�

3V2m + 2α1Vm + α2
�−2

CαUαC
T
α
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Generalisation to multiple output quantities

If there are
multiple quantities having correlations and/or

multiple measurement equations

the law of propagation of uncertainty for multivariate measurement
models (GUM-S2) is a convenient tool to calculate the covariances

In the notation from the GUM, let X = ƒ(Q) for  = 1 . . . N, then
UX = CUQCT provides a full covariance matrix UX, containing all
covariances (X, Xj).

The matrix C holds the sensitivity coefficients ∂ƒ/∂Qj
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Normalisation of a composition

The composition of any material, expressed in fractions always adds up to
a constant

Hence, these fractions are always correlated and the uncertainty of the
sum of all fractions is always zero

Suppose we have N raw amount fractions 1, . . . , N

Then the composition expressed in amount fractions is given by
y = /
∑

j j

From this expression, it is clear that any y depends on all j

Other cases lead to other uncertainty structures, but still there are
covariances to be taken into account
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Effect of ignoring covariances in calculation of natural gas
properties

Table: Natural gas properties calculated from ISO 6976:2016, example 3

Ignoring correlations Including correlations
 () rel()  () rel()

H 937.14 0.63 0.067 % 937.14 0.38 0.040 %
M̄ 18.035 0.014 0.076 % 18.035 0.006 0.035 %
Z 0.99757 0.00005 0.005 % 0.99757 0.00005 0.005 %

Standard uncertainties calculated for the superior calorific value (H) and molar
mass (M̄) vastly different; effect of ignoring correlations differs on a
case-by-case basis
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Multistage measurement models with correlated input
quantities: natural gas properties (ISO 6976)

Composition y

Component calorific 
values H

Component molar 
masses M

Component 
coefficients real gas s

Superior calorific value Hsup 
Inferior calorific value Hinf

Molar mass Mmix

Compressibility factor Zmix

Molar mass air Mair

Compressibility factor air Zair

Heat of vaporisation of 
water L0

Ideal gas:
Superior calorific value Hsup 
Inferior calorific value Hinf

Wobbe index  Wsup 
Wobbe index Winf

Density ρ 
Relative density d

Real gas:
Superior calorific value Hsup 
Inferior calorific value Hinf

Wobbe index  Wsup 
Wobbe index Winf

Density ρ 
Relative density d

Molar mass Mmix

Compressibility factor Zmix

Stage I

Stage II
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Multistage measurement models with correlated input
quantities: natural gas properties (ISO 6976)

Use of law of propagation of uncertainty from GUM-S2 provides a
computationally efficient way to propagate measurement uncertainty

Appendix B of ISO 6976:2016 provides, without matrix calculus, all
expressions to calculate the uncertainties associated with the natural gas
properties

It does not provide expressions for the covariances between natural gas
properties, . . .

. . . but these are often required in subsequent applications (such as
calculating measurement errors).

Duly propagating uncertainty in this area requires substantial
mathematical skills, often not available to the readership of the standard.
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Autocorrelation

JCGM 100 presumes that correlations
can be dealt with by expressing input
quantities into a further set of
(uncorrelated) input quantities

Temperature readings of the
thermocouple are serially correlated
due to the working of the heater of the
thermal bath

A time series analysis is an
appropriate way to deal with this form
of correlation
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Figure: Readings of a thermocouple
measuring the temperature of a thermal
bath (JCGM 103:202n)
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Autocorrelation (continued)

In this instance, an auto-regression of
order 2 is an appropriate model for the
data

A naive type A evaluation of standard
uncertainty would yield
(t) = 0.0003 ◦C, whereas an
ARIMA(2,0,0) model provides
(t) = 0.0010 ◦C, thus about three
times larger (see JCGM 103:202n)
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Figure: Readings of a thermocouple
measuring the temperature of a thermal
bath (JCGM 103:202n)
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Regression

Coefficients of a regression model are almost always correlated

Consider the generalised linear model y =
∑

 ϕ() where ϕ() is some
function of ,

the measurement model is (often) implicit, relating the  to a set of
pairwise (j, yj) values and corresponding uncertainties; there can be
correlations between pairs of (j, k), (yj, yk) and (j, yj) too.

Any good software package provides a full covariance matrix

Use of multiple coefficients in a subsequent calculation requires
information of the corresponding covariances

See also example 9.5 in GUM-S2 (temperature from a resistance
thermometer)
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Monte Carlo method and Bayesian inference

Correlations between input quantities modelled by either
expressing these in independent quantities and assigning probability density
functions
assigning a joint probability density function (such as the multivariate
normal, t, or Dirichlet distribution)

Not for all univariate probability density functions there is a multivariate
counterpart (e.g., rectangular distribution)
GUM-S2, section 7.6 provides an expression for obtaining the covariance
matrix Uy associated with the output vector y
Correlation matrix can be obtained as Ry = DUyD where
D = dig{−1(y1), . . . , −1(yM)}
Approaches for Bayesian inference are very similar (including for assigning
(joint) prior probability density functions)
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Bayesian EIV regression

From a Markov Chain Monte Carlo
calculation, the coefficients of a
straight line (errors-in-variables
regression) are obtained

If the coefficients are to be
communicated, the associated
covariance matrix should be provided
as well

This covariance matrix can obtained
from the MCMC samples of the
calculation as described in GUM-S2

MCMC examples can be extracted
from the calculation

Table: Results from fitting the Bayesian
model for EIV for standard addition

mean sd 2.5% 97.5%

 10.28 8.22 1.16 30.52
b 26.75 1.30 23.69 29.07
r,1 0.01 1.00 −1.95 1.97
r,2 −0.02 1.00 −1.98 1.94
r,3 0.01 1.00 −1.95 1.97
ry,1 0.02 0.75 −0.79 1.83
ry,2 0.37 0.87 −0.58 2.35
ry,3 0.03 1.18 −2.04 2.49
y1 0.39 0.35 0.04 1.24
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Concluding remarks

Evaluating covariances is an essential part of any uncertainty evaluation;
they can increase or decrease the computed uncertainty

When properly established, a measurement model articulates the
dependencies between variables

It is not always necessary to express the measurand(s) into a set of
uncorrelated input quantities

Working with multivariate methods (GUM-S2) is often the easier choice,
but requires familiarity with matrix calculus

Monte Carlo method and MCMC also provide means to extract information
about covariances between output quantities
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