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Introduction

@ Correlations (dependencies) between quantities arise when they depend
on (at least) one other joint quantity

@ It is essential to evaluate covariances as part of the evaluation of
measurement uncertainty

@ Ignoring covariances is the same as setting them to zero ...

@ ...which may lead to serious over- or understating the measurement
uncertainty
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A simple case

@ A calibrated volt meter is used to measure two voltages which are to be
used in a subsequent calculation. What is the covariance between the two
voltages?

o Vi1 =0Vca + \_/ind,l
o Vo =6Vcal + Ving,2

@ We assume the indications as independent and identically distributed (1ID).

@ The only common variable in the two measurement equations is §Vcq, SO
according to equation (F.2) in the GUM, u(V1, V>) = u?(6Vcal)

u2(6ch|)

@ The correlation coefficient is evaluated as r(V1, Vo) = —————
u(Vi)u(v2)
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Generalisation to multiple common quantities

@ If there are multiple common input quantities,

@ where F and G are the measurement equations relating X; and X3 to the
input quantities Q;;

@ only terms for which both partial derivatives are non-zero contribute (i.e.,
the ones concerning the common quantities).

@ See also JCGM 100:2008 clause F.1.2
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Buoyancy effect on a permeation tube in a chamber flushed
with high-purity nitrogen

@ Measurand of interest: permeation rate m = g, = dm/dt

@ Buoyancy effect used to model temperature and pressure influence on
weighing results

@ Buoyancy effect modelled as

M
dMpuo = Viupedp where p=—
Vm

@ Molar volume of high-purity nitrogen V,, computed using a cubic
polynomial (Soave-Redlich-Kwong equation-of-state)
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Use of the Soave-Redlich-Kwong equation-of-state

Equation-of-state can be formulated as
V2 +anV2 + a3V + a3 =0

where

RT 5 RT a ab
ap=——0a=—b‘——b+—;a3=——
p p p

and a and b are coefficients dependent on, among other, the critical

temperature and pressure.

Propagation of uncertainty can be performed using the law of propagation of
uncertainty from GUM-S2 for (multivariate) implicit measurement models,
enabling including the correlations between the g, i.e.,

—2
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Generalisation to multiple output quantities

@ If there are
e multiple quantities having correlations and/or
e multiple measurement equations

the law of propagation of uncertainty for multivariate measurement
models (GUM-S2) is a convenient tool to calculate the covariances

@ In the notation from the GUM, let X; =f;(Q) fori=1...N, then

Ux = CUQCT provides a full covariance matrix Ux, containing all
covariances u(X;, X;).

@ The matrix € holds the sensitivity coefficients 9fi/9Q;
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Normalisation of a composition
@ The composition of any material, expressed in fractions always adds up to
a constant

@ Hence, these fractions are always correlated and the uncertainty of the
sum of all fractions is always zero

@ Suppose we have N raw amount fractions x1,..., Xy

@ Then the composition expressed in amount fractions is given by
Yi= X[/Z] Xj

@ From this expression, it is clear that any y; depends on all x;

@ Other cases lead to other uncertainty structures, but still there are
covariances to be taken into account
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Effect of ignoring covariances in calculation of natural gas
properties

Table: Natural gas properties calculated from 1SO 6976:2016, example 3

Ignoring correlations Including correlations
X u(x) Urel(X) X u(x) Urel(X)

H 937.14 0.63 0.067 % 937.14 0.38 0.040 %
M  18.035 0.014 0.076 %  18.035 0.006 0.035 %
V4 0.99757 0.00005 0.005 % 0.99757 0.00005 0.005 %

Standard uncertainties calculated for the superior calorific value (H) and molar

mass (M) vastly different; effect of ignoring correlations differs on a
case-by-case basis
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Multistage measurement models with correlated input
quantities: natural gas properties (ISO 6976)

Stagel

Component calorific
values H

Stage II

I

Molar mass air My,

Component L
coefficients real gas s Compressibility factor air Zy

Heat of vaporisation of | |
water L°
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Multistage measurement models with correlated input
quantities: natural gas properties (ISO 6976)

@ Use of law of propagation of uncertainty from GUM-S2 provides a
computationally efficient way to propagate measurement uncertainty

@ Appendix B of ISO 6976:2016 provides, without matrix calculus, all
expressions to calculate the uncertainties associated with the natural gas
properties

@ It does not provide expressions for the covariances between natural gas
properties, ...

@ ... but these are often required in subsequent applications (such as
calculating measurement errors).

@ Duly propagating uncertainty in this area requires substantial
mathematical skills, often not available to the readership of the standard.
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Autocorrelation

@ JCGM 100 presumes that correlations

can be dealt with by expressing input % §
quantities into a further set of 2
(uncorrelated) input quantities g S

@ Temperature readings of the cos | | | | | |
thermocouple are serially correlated 0 0 40 60 8 100
due to the working of the heater of the
thermal bath Time (minute)

@ A time series ana|ysis is an Figure: Beadings of a thermOCOUpIe
appropriate way to deal with this form measuring the temperature of a thermal
of correlation bath (JCGM 103:202n)
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Autocorrelation (continued)

@ In this instance, an auto-regression of
order 2 is an appropriate model for the
data

@ A naive type A evaluation of standard
uncertainty would yield
u(t) =0.0003°C, whereas an
ARIMA(2,0,0) model provides
u(t) =0.0010°C, thus about three
times larger (see JCGM 103:202n)
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Figure: Readings of a thermocouple

measuring the temperature of a thermal
bath (JCGM 103:202n)
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Regression

@ Coefficients of a regression model are almost always correlated

@ Consider the generalised linear model y = >}, a;¢i(x) where ¢;(x) is some
function of i,

@ the measurement model is (often) implicit, relating the q; to a set of
pairwise (xj, y;) values and corresponding uncertainties; there can be
correlations between pairs of (x;, x«), (v;, y«) and (x;, y;) too.

@ Any good software package provides a full covariance matrix

@ Use of multiple coefficients in a subsequent calculation requires
information of the corresponding covariances

@ See also example 9.5 in GUM-S2 (temperature from a resistance
thermometer)
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Monte Carlo method and Bayesian inference

@ Correlations between input quantities modelled by either
e expressing these in independent quantities and assigning probability density
functions
@ assigning a joint probability density function (such as the multivariate
normal, t, or Dirichlet distribution)
@ Not for all univariate probability density functions there is a multivariate
counterpart (e.g., rectangular distribution)
@ GUM-S2, section 7.6 provides an expression for obtaining the covariance
matrix Uy associated with the output vector y
@ Correlation matrix can be obtained as Ry = DUy,D where
D =diag{u~*(y1),..., u"*(ym)}
@ Approaches for Bayesian inference are very similar (including for assigning
(joint) prior probability density functions)
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Bayesian EIV regression

@ From a Markov Chain Monte Carlo

calculation, the coefficients of a Table: Results from fitting the Bayesian
straight line (errors-in-variables model for EIV for standard addition
regression) are obtained mean <d 25% 97.5%
@ If the coefficients are to be a 10.28 822 1.16 30.52
communicated, the associated b 26.75 1.30 23.69 29.07
covariance matrix should be provided r,i 0.01 1.00 —1.95 1.97
as well rx2 —0.02 1.00 -1.98 1.94

rx,3 0.01 1.00 -1.95 1.97

@ This covariance matrix can obtained i 002 075 —0.79 183

from the_ MCMC sam_ples _of the fv2 0.37 0.87 —0.58 235
calculation as described in GUM-S2 3 0.03 1.18 —2.04 > 49
@ MCMC examples can be extracted Y1 0.39 035 0.04 124

from the calculation
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Concluding remarks

@ Evaluating covariances is an essential part of any uncertainty evaluation;
they can increase or decrease the computed uncertainty

@ When properly established, a measurement model articulates the
dependencies between variables

@ It is not always necessary to express the measurand(s) into a set of
uncorrelated input quantities

@ Working with multivariate methods (GUM-S2) is often the easier choice,
but requires familiarity with matrix calculus

@ Monte Carlo method and MCMC also provide means to extract information
about covariances between output quantities
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