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Compressed sensing

signal *
® subsampled data

Goal: signal reconstruction given randomly subsampled data
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Compressed sensing

® subsampled data
reconstruced signal

Compressed sensing reconstruction
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Compressed sensing

Fourier domain

® subsampled data
reconstruced signal

< signal spectrum
reconstructed spectrum

Compressed sensing reconstruction Only few non-zero Fourier coefficients
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Compressed sensing

Fourier domain

® subsampled data
reconstruced signal

< signal spectrum
reconstructed spectrum

Compressed sensing reconstruction Only few non-zero Fourier coefficients

¥

Signal is sparse in Fourier domain
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Compressed sensing: Math

Sparse recovery from an underdetermined linear system

y subsampled data
min ||u|l, Subjectto y="Vu 14 known sensing matrix
- U sought sparse vector
leello number of non-zero elements
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Compressed sensing: Math

Sparse recovery from an underdetermined linear system

y subsampled data
min ||u|l, Subjectto y="Vu 14 known sensing matrix
- U sought sparse vector
leello number of non-zero elements

Solution via combinatorial search usually not tractable

» Convex relaxation : min ||u|l; subjectto y ="Vu
U
» Alternative: Greedy methods

Donoho, D. L. (2006). Compressed sensing. IEEE Transactions on information theory, 52(4), 1289-1306.

Candes, E. J. (2008). The restricted isometry property and its implications for compressed sensing. Comptes rendus
mathematique, 346(9-10), 589-592.

Eldar, Y. C., & Kutyniok, G. (Eds.). (2012). Compressed sensing: theory and applications. Cambridge University Press.
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Joint regression and compressed sensing

sparse regression
component component

signal domain S MWWW + g8 = WWW
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Joint regression and compressed sensing

signal domain

Fourier domain
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Joint regression and compressed sensing

Model y=Vu+X6

y subsampled data
%4 known sensing matrix
l \ U sought sparse vector
X oo deson et
component component J J
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Joint regression and compressed sensing

Model y = V|J, + X6 y subsampled data
%4 known sensing matrix
l \ U sought sparse vector
- X known design matrix
sparse regression .
cgmponent cogm ponent ‘ sought weights (few)
Two step procedure
1) Evaluation of sparse signal
« Determine matrix P so that PX =0
e y=Py=PVu represents standard compressed sensing task

* Apply greedy method to obtain sparse representation
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Joint regression and compressed sensing

Model y=Vu+X6

y subsampled data
|4 known sensing matrix
l \ U sought sparse vector
' X known design matrix
sparse regression :
component component 6 sought weights (few)
Two step procedure
2) Regression
* Reduced regression task y = 1% ii +X6 V' matrix containing only

columns of V where u + 0

- |dentifiable since rank([V,X])=p +r

p number of weights 6
r number non-zero elements of u

=» Estimated weights 6 and coefficients i
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Nano-Fourier-transform infrared spectroscopy (nano-FTIR)

» Combines infrared (IR) spectroscopy

with scanning probe microscopy.

» Enables hyperspectral imaging at

nanometer spatial resolution
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Nano-Fourier-transform infrared spectroscopy (nano-FTIR)

Detector

» Combines infrared (IR) spectroscopy D\\l

with scanning probe microscopy. Q H

Cantilever

Light Source

Synchrotron ¢ .
Beamsplitter Sample

» Enables hyperspectral imaging at

nanometer spatial resolution [ Movable mirror

Nano-FTIR can be used to determine chemical mappings
» Spatial distribution of concentration of substances contained in the sample

» Obtained by solving a regression task using known spectral characteristics

Huth F, Govyadinov A, Amarie S, Nuansing W, Keilmann F and Hillenbrand R (2012) Nano-FTIR absorption spectroscopy of molecular

fingerprints at 20 nm spatial resolution Nano Lett. 12 3973-8
Amarie S, Zaslansky P, Kajihara Y, Griesshaber E, Schmahl W W and Keilmann F 2012 Nano-FTIR chemical mapping of minerals in

biological materials Beilstein J. Nanotechnol. 3 312-23
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Nano FTIR chemical mapping

Challenges

» Nano-FTIR is scanning based = long measurement times (hours)

» Data may contain signal contributions of further, unknown substances
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Nano FTIR chemical mapping

Challenges

» Nano-FTIR is scanning based = long measurement times (hours)

» Data may contain signal contributions of further, unknown substances

Joint regression and compressed sensing approach

» Subsampling enables reduced measurement times
» Additional signal contribution is assumed to be sparse

» Spatial regression includes Gaussian Markov random field regularization
Rue, H., & Held, L. (2005). Gaussian Markov random fields: theory and applications. Chapman and Hall/CRC.



Nano FTIR reconstruction

> Real nano-FTIR measurements” superimposed by simulated chemical mappings
» Simulated components and sparse signal exhibit spectral overlap

» Data taken at a subsampling rate of 20%.

I
6 Fully sampled
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*) Kastner, B., Schmahling, F., Hornemann, A., Ulrich, G., Hoehl, A., Kruskopf, M., Pierz, K., Raschke, M. B., Wiibbeler, G. and Elster, C. (2018)
Compressed sensing FTIR nano-spectroscopy and nanoimaging. Optics Express, vol. 26, no. 14, pp. 18115-18124.
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Chemical mapping estimates
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Summary

» Development of a joint regression and compressed sensing approach

» Subsampling enables reduced measurement times

» Unknown signal contributions modelled non-parametrically

» Functionality demonstrated using augmented nano-FTIR data

Wiibbeler, G., Marschall, M., Rihl, E., Kdstner, B., & Elster, C. (2022). Compressive nano-FTIR chemical mapping.
Measurement Science and Technology, 33(3), 035402.



