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Context and Motivation

Inference of hidden parameters: Bayesian Inverse
Problem

Given a forward map u: RM — R” and noisy observations
§ = u(y*) +n € R’ with centered additive Gaussian noise
n € N(0, X), the Bayesian inverse problem reads

my1s(y) = Z7 L(y; 6)mo(y)

with data likelihood
1
i) = e (~3l6 - u(y)H@)

and normalization constant Z = E,[L(e
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Context and Motivation
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Idea

If h: RM — R is easy to approximate for M > 1 we can use this to construct u = exp(h)
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Approach and Setting for Exponentiation

PDE and Galerkin projection
For f(y) = exp (h(y)) Vh(y) and arbitrary yo € RM, u(y) = exp (h(y)) — exp (h(y)) is the solution of

Vu—uVh=f, and u(yo) = 0.
The variational form for B(w) = Vw — w Vh and X = {w € HX(RM, 7): w(yp) = 0} reads:

Find u € X such that (B(U)m: V) 2@M,x) = {fms V) 12(&M ) forallm=1,..,M and v € L>(RM, ).
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Approach and Setting for Exponentiation

PDE and Galerkin projection
For f(y) = exp (h(y)) Vh(y) and arbitrary yo € RM, u(y) = exp (h(y)) — exp (h(y)) is the solution of

Vu—uVh=f, and u(yo) = 0.
The variational form for B(w) = Vw — w Vh and X = {w € HX(RM, 7): w(yp) = 0} reads:

Find u € X such that (B(U)m: V) 2@M,x) = {fms V) 12(&M ) forallm=1,..,M and v € L>(RM, ).

original idea

/‘A P u(y) = exp h(y) is the solution of the IVP
~
-/ d(y)=H()uly),  and  u(y) = exp h(y)
'(u z different approach
v We can also use a different ansatz: for a, b € R
>
u" = [+ (h)?]u, and u(a) = exp h(a), u(b) = exp h(b)
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Energy Norm and Error Bounds

Lemma (energy norm)
B: X =V is injective (if B(V,) € Vt) and ||w||g := ||B(w)| 2 is a norm on X
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Energy Norm and Error Bounds

Lemma (energy norm)
B: X =V is injective (if B(V,) € Vt) and ||w||g := ||B(w)| 2 is a norm on X

Relation to other norms

M =1 and h € W"=(R)
(+)  Gaussian and |h'(y) —y/2| > ¢

$

lu=wnlls < Cllu — wn | (ry

¢

lu—wnlle@n < e Hu—wnle
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Energy Norm and Error Bounds
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= equivalence (efficiency and reliability) with constant 1

= operators can be represented efficiently in high dimen-
sions (Tensor Trains)

= no computational overhead when using Galerkin ap-
proach with TTs

N. Farchmin Approximation of high-dim Exponentials



Energy Norm and Error Bounds

Lemma (energy norm)
B: X — V is injective (if B(V,) € Vt) and ||w||g := [|[B(w)||12(x) is @ norm on X

Relation to other norms
M=1and he WI'OQ(R) > [lu—wn|s < CHU*WN”HI(T{)

(+) 7 Gaussian and |h'(y) —y/2| > ¢ ~ llu — wnll 2y < e Y lu— wyls

Theorem (equivalence of continuous residual and energy error)
u € X solution of (B(u), v) = (f,v) for f(y) = exp h(yo) Vh(y) € V¢

||u—wn|g = ||f — Bwnl|2 for all wy € V,
= equivalence (efficiency and reliability) with constant 1 = bounds hold for arbitrary discrete function
= operators can be represented efficiently in high dimen- = check error in iterative schemes
sions (Tensor Trains) = use theory to check error in other approximation schemes
= no computational overhead when using Galerkin ap- = similar for other holonomic functions (polynomials,

proach with TTs rational functions, sin, cos, Bessel functions, erf, ...)
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Experiment: Exponentiation of log-Likelihood

Forward map u solution to — V -(exp(y(x, y)) Vi u(x, y)) = 1, approximation uy and
observation §, with ¥ = 1079/, let

1(y) = exp((—5 6 — u() 13

For samples {y()} reconstruct uy with (y), u(y("))) and Ly with (y(),

Consider the errors

Res(wy) = ||f — Bwy|2
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and
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Conclusion

Summary:

= non-intrusive (only requires TT represenation of h)

= freedom in choice of PDE (e.g. second-order problem) and
thus of energy norm

= problem adaptable choice of initial condition / RHS of PDE

= free, reliable and efficient error estimator for any discrete
function

= generalization to other holonomic functions (algebraic
functions, sin & cos, sinh & cosh, log,, erf, generalized
hypergeometric function, Bessel functions, .. .)

= analysis easily extendible to other functions / PDEs
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Conclusion

EFFICIENT APPROXIMATION OF HIGH-DIMENSIONAL
EXPONENTIALS BY TENSOR NETWORKS
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EE
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= freedom in choice of PDE (e.g. second-order problem) and
thus of energy norm

= problem adaptable choice of initial condition / RHS of PDE

= free, reliable and efficient error estimator for any discrete
function

= generalization to other holonomic functions (algebraic

functions, sin & cos, sinh & cosh, log,, erf, generalized
hypergeometric function, Bessel functions, .. .)

#E

& Git: gitlabl.ptb.de/pythia/pythia

= analysis easily extendible to other functions / PDEs

F: Doc: pythia-uq.rtfd.io
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Efficient Implementation in Tensor Train Format

Use first-order optimality criterion:

uy = argmin ||f — Bwy||3 ~
wyEV,NX

We have B, = D,, — H,, and f, ~ D, h with:

q 0 qm—1 qm Gm+1
U @
d dy dp—y diy, gy

WUN:b

Hence rank(B,) = rank(h)+1 and  rank(f,,) = rank(h)
Laplace-like structure of W and b yields: rank(W) = 2 (rank(h) -+ 1)? + 1 and rank(b) = 2 rank(h) (rank(h) + 1)

M M
W:=> BB, and b:=Y BLfn
m=1 m=1




Assembly of Discrete System

Basic TT Operators:

i) differentiation: D, = I®(™D g D g I®M-m) with D[i, j] == {pi, P} 12(B.e,)

ii) multiplication by Omh: Hm[p, v] = > _; Hj‘il H ki, 1y, v, kja] with 775 6 = (pipj, Pi) 2 (8, 7)

dn dn
Hjlkg, 1. vj kisal = > Tpuibyllg ika]l - and Homlke i, Vi kimia] = Y Ty Dlit, ol [k, i2, kimo1]
i=1 =1

Partial Derivative Operators: B, :== D,, — H, and fm:=exp(h(yo)) Dmh
Quadratic System: Wu=b  for ~ W:=PPT+Y¥ BIB, and b:=%Y Blf,

i) rank-1 basis evaluation tensor: P € R%’ given by P[u] = P,.(v0)

ii) sum of partial derivative operators: § = Z'\mﬂzl B! B, (Cj = Bpj for any m # j)
(e} o 0 crc
S, =|B],B cic,|. S= J ) , and Sy = M=
{ 11911 1 1} Jj B!,B,, CJ-TCJ-:| Bl By
i) sum of partial derivative RHS:
Clg. 0 cug
b, = |B],f Clg,|. b= J=J d by = MSm
' { me 151] T Bl C/'Té'j} T Bl




Second Order System and Energy Norm

For y ~ U([0, 1]) consider the second order system
w” = (0 + (K w with w(y1) = exp h(y1) and w(y2) = exp h(y2).

Let h = A" + (H')? and

Yo—Yy +e><p(h(y2))y_y1
yi—y2 yi—y2

Then ¢’ =0, c(y1) = —exp (h(y1)) and c(y2) = —exp (h(y2)) and it follows, that u = w + ¢ solves

c(y) = exp (h(y1))

—u"+hu=f  with u(y1) =u(y2) =0
for f = hec. Assuming 0 < h < h(y) < h < oo for a.a. y € [0, 1], the weak formulation reads
B(u,v) = {f,v) for B(u,v) = (u', V') + (hu, v).

For the energy norm induced by B it holds

min{L, B} [wl < lwlle < min{1, A} w] .



Diffusion Coefficient of Lognormal Darcy Equation
As a model problem we use a(x, y) = exp (21?:1 'yg(x)ye) with
Ye(x) = %(2)[’2 cos(2mB1(€)x1) cos(2mB2(0)x2),

where B1(£) = £ — k(£)**L and Ba(£) = k(£) — Bu(f) for k(£) = [—1 + /3 +2¢].

1020
1015

127
1010 -
2005 "
2000 s
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Lognormal Field with given Covariance Length

Let a(x,w) = exp (y(x,w)) with centered Gaussian random field v with covariance

1 _
Cov,(x,z) := 100 exp(—£72|[x — z[|3).

s €~W(’YM) rmax(aPDE) reS(apDE) 5aM(3PDE) rmax(aVMC) reS(BVMc) 5aM(3VMC)

10 1.59-1077 21 1.62-10~* 4.10-10°7 9 497-107' 6.59-1073
5 930-1077 21 1.99-107* 1.68-10°° 7 5.51-107' 3.01-1073
1 579-10°° 38 1.31-107* 8.04-10°° 8 487-107' 1.05-1072
05 327-107* 52 210-107% 2.69-107° 7 3.09-1071 1.35.10°2
0.1 857-1073 114 528-107*% 3.21.10°° 13 1.30-10°  6.17-1072

Table 1: L-shaped domain with CG-1 FEM (3017 DoFs) for M = 20 and d, = 10. Also vy, is computed for M = 100.
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