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YieldStar E-beam

Optical and e-beam 

metrology and inspection

Deep Learning Algorithms

DUV

Resist

Mask

EUV. NA=0.33 =>0.55

Optical Wafer Metrology and Holistic Patterning in Lithography

Optical Lithography
Scanner with advanced control capability 

IMAGE

MODEL MEASURE
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Optical Metrology : diffraction-based overlay metrology (DBO)

Set of 4 intensities yields overlay 

Grating in bottom layer

Grating in top layer

Incident light

𝑨+𝒃

𝑨−𝒃

𝑰+𝒃
+𝟏 − 𝑰+𝒃

−𝟏 = 𝑨+𝒃

𝑰−𝒃
+𝟏 − 𝑰−𝒃

−𝟏 = 𝑨−𝒃

+1st-1st

Diffraction Asymmetries 

+20 nm

-20 nm

µDBO target on Wafer

10x10 µm2

DBO diffraction-based overlay (metrology) 
DBO small-target DBO
OV overlay

measured 1st order 
diffraction intensities 

YieldStar Dark-Field Image 

Target-on-Wafer 
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Some Views on 

Our Research Landscape

(for wafer metrology) Optical Wafer 
Metrology

(2030) 

large wavelength 
range 400-1600nm

(applications)

optics design
simple optics

(low cost)

linear imaging
system (fully 

coherent or incoherent)

4D-aberrations /

non-isoplanatism

Inverse Problem
of digital

4D-aberration
correction
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2D-aberrations versus 4D-aberrations
(isoplanatic versus non-isoplanatic)

2D / isoplanatic 4D / non-isoplanatic 

PSF is constant over the field PSF depends on field-position
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2D-aberrations versus 4D-aberrations
(isoplanatic versus non-isoplanatic)

2D / isoplanatic Isoplanatic Computational Imaging    

! NOT POSSIBLE in case of Non-Isoplanatic Imaging !
since  𝑊𝑛𝑜𝑛−𝑖𝑠𝑜𝑝𝑙 = 𝑊 𝝆,𝑯 Hopkins

expansion

𝑯 field space 

(real space)

𝝆 pupil space 

(Fourier space)
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(Hopkins coefficients;

J. Sasian Table 5.1)

𝐻

Ԧ𝜌

field
(real space) 

pupil
(Fourier space) 

Hopkins

(1918-1994) 

𝐻2 𝑗 𝐻 ∙ Ԧ𝜌
𝑚
𝜌2 𝑛

pupil distortion

field distortion

Hopkins’ Expansion of 

4D wave-aberration function
(rotationally symmetric system)
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PSFk

𝐻

𝐻′

H4D
PSFm

𝐻𝑥

𝐻𝑦

𝐻𝑥

𝐻𝑦

H4D contains spatially varying PSFs, dependent on the position 𝐻′ of the point in the object. 

= ∙i o

𝑖 𝐻 = න𝐻4𝐷 𝐻;𝐻′ 𝑜 𝐻′ 𝑑𝐻′
image wave object wave4D-PSF

H4D

Non-isoplanatic 4D-PSF Forward Model

matrix notation
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Concept of Point-per-Point-Deconvolution for solution of Inverse Problem

ℎ𝑘 = PSFk

𝐻

𝐻′𝐻𝑥

𝐻𝑦

𝐻𝑥

𝐻𝑦

ℎ𝑘
𝑐𝑒𝑛

H4D 

𝑑𝑘

convolution kernel de-convolution kernel

∗

𝐼𝑎𝑠−𝑑𝑒𝑡

as-detected image

=

deconvolved image (local kernel)

𝐼𝑑𝑒𝑐−𝑙𝑜𝑐

single corrected pixel

i  

O  
4D-PSF

Image

Object

Do repeat for all pixels
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New Approach: SVD-on-Deconvolution-Kernels for Inverse Problem

ℎ𝑘 = PSFk

𝐻

𝐻′

ℎ𝑚 = PSFm

𝐻𝑥

𝐻𝑦

𝐻𝑥

𝐻𝑦

ℎ𝑘
𝑐𝑒𝑛 ℎ𝑚

𝑐𝑒𝑛

K  

𝑑𝑘 𝑑𝑚

local convolution local de-convolution

SVD

SVD singular value decomposition

H4D 
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local

deconvolution-kernels

𝐷4𝐷 𝐻;𝐻′ ≈ 

𝑘=1

𝑘𝑚𝑎𝑥

𝑝𝑘 𝐻 − 𝐻′ 𝑤𝑘 𝐻′
product-convolution

series approximation

of 4D-Deconvolution Kernels

modal isopl. 2D-

deconvolution kernels modal

2D-weights

ො𝑜 𝐻 ≈ 

𝑘=1

𝑘𝑚𝑎𝑥

𝑝𝑘 𝐻 ∗ 𝑤𝑘 𝐻 𝑖 𝐻
kmax isoplanatic modal 

deconvolutions on spatially 

weighted versions of the 

measured image field i.

SVD-based

deconvolution

for 4D-aberrations

(~ kmax FFTs)
object-

field
image-

field

New Approach: SVD-on-Deconvolution-Kernels for Inverse Problem
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Two Strategies for 4D Aberration Correction

Strategy-1

1-step Approach

Strategy-2

3-step Approach

1. SVD-based Deconvolution for 

all 2D & 4D aberrations in one go.

1. Isoplanatic Deconvolution with 

the deconvolution kernel for the 

PSF at one chosen location.

- 2. Pupil Distortion Correction

(by remapping of pupil (Fourier) 

space due to W131, W151, …)

- 3. SVD-based Deconvolution for 

all remaining 4D aberrations.

PRO

One single framework

PRO

Computational efficiency
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Dark-Field Holographic Microscope (DHM)

Experimental

DHM set-up

@ VU-ARCNL

Schematics of

DHM set-up

@ VU-ARCNL

 = 532nm / 632nm

NA = 0.80

• off-axis holography

• measurement of amplitude and phase 
of the image field from the sideband of the hologram
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4D-PSF Calibration via 2D-array of Nanoholes

100nm

11x11 nanoholes 70x70 m2 field-of-view

AFM

• Nanoholes acts as -functions

• Nanoholes probe the spatial variation of the 
4D-PSFs as measured directly via the 
sideband of the hologram.
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4D-PSF Calibration via 2D-array of Nanoholes

7 m

assumed position
of nodal point

(= origin of field space)

 = 532nm

NA = 0.80

7x7 SW-subset of 11x11 nanohole array            

Simulated PSFs (from parameters Optics Design)
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4D-PSF Calibration via 2D-array of Nanoholes

7 m

assumed position
of nodal point

(= origin of field space)

 = 532nm

NA = 0.80

7x7 SW-subset of 11x11 nanohole array
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4D-PSF Calibration via 2D-array of Nanoholes

7 m

 = 532nm

NA = 0.80
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No Correction, as-detected.

 = 632nm

NA = 0.80

20 m

pitches: 900nm        800nm        700nm        600nm         500nm        400nm 

C20

C15

C10

4D Aberration Correction for Array of Grating Pads
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Full Correction, isopl. + pupil disto.corr. + SVD + digital focus.

 = 632nm

NA = 0.80

20 m

pitches: 900nm        800nm        700nm        600nm         500nm        400nm 

C20

C15

C10

4D Aberration Correction for Array of Grating Pads
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Full Correction, isopl. + pupil disto.corr. + SVD + NO digital focus.

 = 632nm

NA = 0.80

20 m

pitches: 900nm        800nm        700nm        600nm         500nm        400nm 

C20

C15

C10

4D Aberration Correction for Array of Grating Pads



Public

Page 21

Some Extra Thoughts

• Non-isoplanatism can be caused by at least 3 effects:

• 4D aberrations of the imaging optics

• Surface roughness of the multiple lens components

• Field-position dependent apodization in Holographic Microscopy, 
see submitted paper to Optics Express (Sept. 2022):

• Other areas of Application:

• Correction for Spatially Varying Blur in Incoherent Imaging in Astronomy 

• See: L. Denis, E. Thiebaut, F. Soulez, J.-M. Becker, R. Mourya, Fast Approximations of 
Shift-Variant Blur, Int. J. Comput. Vis. Vol. 115, 2015, pp. 253-278

• Based on MSE-optimization using an iterative approach
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Conclusions

• Deconvolution for 4D field-dependent non-isoplanatic aberrations is feasible for 
coherent imaging in off-axis holography at low computational costs.

• A computationally efficient SVD-based deconvolution strategy has been proposed.

• The SVD-based deconvolution can be combined with two prior steps of 

(a) isoplanatic deconvolution
(b) pupil distortion correction

in order to further increase computational efficiency.

• Very first experimental data as acquired with Dark-Field Holographic Microscopy
have shown a first proof of concept of our 4D aberration correction strategy.
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