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Introduction

▪ Electric Properties Tomography (EPT) images the electric properties (EPs) of biological tissues
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Introduction

▪ Electric Properties Tomography (EPT) images the electric properties (EPs) of biological tissues

▪ EPT is based on Magnetic Resonance Imaging (MRI) for the input maps

Static field Larmor frequency

1.5 T 64 MHz

3 T 128 MHz

7 T 300 MHz
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Introduction

▪ EPs in the radiofrequency (RF) range can act as physical biomarkers

Van Lier et al., Proc. ISMRM p.4464, 2011
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Introduction

▪ EPs in the radiofrequency (RF) range can act as physical biomarkers

▪ Knowing the value of tissue EPs is very important for accurate numerical simulations

Van Lier et al., Proc. ISMRM p.4464, 2011

Kok et al., Radiation Oncology 10:196, 2015
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Introduction

▪ A plethora of techniques for EPT are proposed in the literature

▪ Each one with its own model errors
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Introduction

▪ A plethora of techniques for EPT are proposed in the literature

▪ Each one with its own model errors

OBJECTIVE

To estimate the pixel-wise uncertainty of the retrieved EPs maps 
taking into account the model errors.
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Introduction

▪ A plethora of techniques for EPT are proposed in the literature

▪ Each one with its own model errors

▪ This would allow us to compare the EPT results

OBJECTIVE

To estimate the pixel-wise uncertainty of the retrieved EPs maps 
taking into account the model errors.
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Method

▪ Phase-based Helmholtz-EPT consists in the evaluation of a Laplacian

05/12

𝜑±

𝜎 =
∇2𝜑±

2𝜔𝜇0



Method

▪ Phase-based Helmholtz-EPT consists in the evaluation of a Laplacian

▪ The Laplacian is evaluated through the Savitzky–Golay filter:

1. A moving kernel is centered at the pixel of interest

2. The phase map is locally approximated with a polynomial fitting

3. The Laplacian of the polynomial is evaluated analytically
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𝒙∗ = argmin
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𝐴𝒙 − 𝒃 2

▪ The QR decomposition of 𝐴 allows to:

1. Solve the problem

2. Estimate the uncertainty of 𝒙∗
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• 𝑄 ∈ ℝ𝑚,𝑚 is an orthogonal matrix
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Method

▪ 𝜒𝑛
2 estimates the variance of 𝒃 components, assumed to be independent identically distributed
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Method

▪ 𝜒𝑛
2 estimates the variance of 𝒃 components, assumed to be independent identically distributed

▪ The law of propagation of the uncertainty can be used again

07/12

Σ 𝒙∗ = ෨𝑅−1Σ 𝒄1 ෨𝑅−T = 𝜒𝑛
2 ෨𝑅−1 ෨𝑅−T

Σ 𝒃 = 𝜒𝑛
2𝐼 ⟹ Σ 𝒄 = 𝑄TΣ 𝒃 𝑄 = 𝜒𝑛

2 𝑄T𝑄 = 𝜒𝑛
2𝐼



Method

▪ 𝜒𝑛
2 estimates the variance of 𝒃 components, assumed to be independent identically distributed

▪ The law of propagation of the uncertainty can be used again

▪ Finally, the Laplacian is computed as a linear combination of the polynomial coefficients
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Application to phantom measurements

▪ 𝜑± acquired by a 3 T MRI scanner
(Ingenia, Philips HealthCare, Best, The Netherlands)

• Body coil in transmit mode

• 15-channel head coil in receive mode
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Application to phantom measurements

▪ 𝜑± acquired by a 3 T MRI scanner
(Ingenia, Philips HealthCare, Best, The Netherlands)

• Body coil in transmit mode

• 15-channel head coil in receive mode

▪ Two T1-weighted Spin-Echo maps acquired with opposite 
readout polarities and combined for the 𝜑± acquisition

• TR = 900 ms; TE = 5 ms; resolution = 2 mm isotropic

▪ Agar-based (2 %) phantom with inner compartments with 
NaCl added.
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Application to phantom measurements

▪ The kernels of the Savitzky-Golay filter are square of 2𝑛 + 1 pixels per edge

▪ Large uncertainties at compartment boundaries ➔ Model errors are included
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Application to phantom measurements

▪ The maps can be compared and combined pixel-by-pixel looking for:

• Minimum uncertainty

• Positive conductivity (physical constraint)

▪ Highlighted the regions where the relative uncertainty 𝑢(𝜎)/𝜎 is below 1
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Hybridization of EPT techniques
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Convection reaction-EPT Helmholtz-EPT
▪ Phase-based convection reaction-EPT 

is a technique based on a PDE

▪ Once discretized, it can be written as 
a least squares problem

▪ The problem can be regularized with 
a weighted additive term derived by 
the Helmholtz-EPT solution

∇ ⋅ 𝜌∇𝜑± = 2𝜔𝜇0



Hybridization of EPT techniques

▪ Phase-based convection reaction-EPT 
is a technique based on a PDE

▪ Once discretized, it can be written as 
a least squares problem

▪ The problem can be regularized with 
a weighted additive term derived by 
the Helmholtz-EPT solution

▪ Using the QR decomposition the 
problem can be solved obtaining also 
the uncertainty map.
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Hybrid-EPT Relative uncertainty (%)

Convection reaction-EPT Helmholtz-EPT

∇ ⋅ 𝜌∇𝜑± = 2𝜔𝜇0



Conclusions

▪ A pixel-wise estimation of the uncertainty in Helmholtz-EPT has been presented

▪ The procedure can be applied also to other techniques based on the least squares problem

▪ Such an uncertainty estimation is fundamental for:

• Quantitative pixel-wise comparison

• Weighted hybridization of EPT techniques
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Thank you for your attention!


