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Motivation: use low-cost sensors to 
improve pollutant maps

n Network 1 (fixed): 
reference network, 
high quality but 
highly sparse

n Network 2 (fixed or mobile): 
micro-sensors, of less good 
quality but homogeneous
and more dense

n Network 3 (mobile): of micro-
sensors in connected objects, 
of medium (or unknown) 
quality and heterogeneous
but potentially very dense
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Illustration with 2 networks
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The reference network 1 and the micro-sensors network 2

®Atmo Auvergne-Rhône-Alpes (2017)
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City of Grenoble (France)

• Reference network 1
quite sparse

• Micro-sensors network 2 
more dense



Data assimilation to combine 
numerical models and observations

Projet Votre Air : collaboration Airparif, Inria, Numtech
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Model outputs (map) +
Pointwise observations

Mapping 
assimilated
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• A way to improve the quality of reconstructed map interest:                         
to increase the density of sensors

• Availability of low-cost sensors in addition to reference stations 
measurements, opens a possibility without a prohibitive cost



Statistical context
• Geostatistical approach for the fusion of measurements

Schneider et al. (2017) seminal study about NO2 in Oslo
Gressent et al. (2020) a similar study for Nantes (France)

including also mobile micro-sensors data
Miskell et al. (2018), Weissert et al. (2020) 

hierarchical network design, low-cost 
sensor checking and correction by data fusion

• 1st step: correct micro-sensors measures thanks to those given by the reference
sensors. In general offline pre-processing, during a preliminary colocation study. 
Spinelle et al. (2015, 2017), Borrego et al. (2016)

• However this calibration preprocessing could fail to adapt quickly to various changes 
(technology, preprocessing included by the sensors providers, inhomogeneous
sources, …)

• We complement such approaches by a simple scheme merging the two steps by 
considering online spatial correction of micro-sensors
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Kriging method
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• See Cressie (1993)
• Measures:

• Underlying spatial interpolation model 

μ(s) = m (ordinary kriging), m to be estimated 
μ(s) = b1f1(s) + … + bKfK(s) (universal kriging) where the functions fk(s) are 

given and the bk are to be estimated 
A special case is the kriging with external drift, modeling Z(s) as a linear 

function of a deterministic map typically a numerical model output
ε(s) is a zero mean stationary with a spatial dependence structure 

given by the variogram 

• Remark: weights depend on covariances and distances but not on Z

 ! !! = !! !! ! !!!  

! ! = ! ! + ! ! , ! ∈ ! 

! ℎ = 1
2 var ! ! + ℎ − ! ! = ! 0 − ! ℎ  

   where ! ℎ = cov ! ! ,! ! + ℎ   

 !! !! , 1 ≤ ! ≤ ! 
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Measures               Model              Interpolation



Kriging residuals
• Idea: correct predictions by measures, see de Fouquet et al. (2011)

Since the kriging requires some spatial stationarity, apply kriging to       
residuals (innovations) instead of concentrations

• Start from a predicted map given by a deterministic model like Esmeralda
or Chimere:

• Define the pseudo-innovations by the prediction errors

• Kriging the innovation process to obtain estimates

and then deduce a corrected map

• Remark: here, kriging relates to the difference between observed
concentration and model output, whereas kriging with external drift 
relates directly to the concentration at the measurement stations
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Spatial iterative correction
Correction is first defined for an asymmetric situation: micro-sensor network Res2  

corrected by the reference network Res1 supposed to be of high quality. 
It consists in two steps performed iteratively:

1. Kriging a map (typically a neighborhood or a city) using
simply measurements or by statistical adaptation of a map. This provides an 
estimate for all the points of network 1 included in S2 (a few points)

2. Kriging the differences to get a correction                     and 
then a new map from which corrected measurements of network 2 are extracted

This can then be iterated until stabilization of the quality of the maps obtained by 
successive corrections of Res2 evaluated in the stations of Res1, measuring the proximity
of corrected microsensors measures to the reference measurements
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Spatial iterative correction (2)
Spatial correction algorithm can also be useful in a more symmetric case, typically for 

measurements coming from two or more sub-networks of diverse quality. 
Iterative correction for the homogenization of micro-sensor data from 2 
different populations (Res2 and Res3) can easily be defined: 

1. Set Resa = Res2 and Resb = Res3

2. By kriging using Resa measurements, build a map
to provide an estimate at any point of the b network in Sa

3. By kriging the differences get a correction                     and 
then deduce the corrected measurements of network a

4. Then we iterate such stages by exchanging the roles of the two networks.         
Swap Resa = Res3 and Resb = Resa,corr

5. Then one iterates such pairs of stages on the networks obtained by mutual
correction, until stabilization of the difference of the two reconstructed maps
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Numerical experiments
• Computations were performed using the RGeostats geostatistical package, 

developed with R language

• Simulated Data. Starting from the map of the daily maximum ozone concentration, 
August 26, 2019, output from Esmaralda
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Simulated map obtained from
concentration values and according
to a cubic variogram of range 300
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Simulation study
• How many iterations to converge?
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• Performance of the correction?
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Simulation study (2)
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• Geographical location of errors
represented by a proportional
bubble.

• The smallest micro-sensor errors are 
often observed near fixed stations. 
They are also found at the lowest 
concentrations. 
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Application to real data
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• In the next future, Atmo Normandie will, for the city of Rouen, collect in addition to 
their reference network of few stations, a second network of numerous micro-sensors 

• But at this stage, no such data are available. We have used the real data from the 
Mobicit'air project of Atmo Auvergne-Rhône-Alpes, the pollution network of the 
Grenoble area, in partnership with Grenoble-Alpes-Métropole

@Atmo Auvergne-Rhône-Alpes (2017) in report
‘’Assimilation de données de micro-capteurs 
dans les cartographies fines échelles’’

Data
• Hourly average concentrations 

(in 𝜇g/m3) of NO2 pollutant
• 147 days, from January 5, 2017 

to May 31, 2017
• N1=6 reference stations 

located in the Grenoble area, 
close to traffic, in urban or 
suburban places 

• N2=15 micro-sensors



Global RMSE-CV 
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• The boxplots of the 
RMSE as a  function 
of hour

• The quality depends
on time instant

• The median as well
the variability vary as 
expected, smaller
during the night and 
higher during the 
end of the afternoon
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RMSE-CV to assess the correction method, "leave-one-out" resampling procedure, for 
each reference station, we can estimate the concentration at this point of Res1
without using the actual measure

• For each point, apply the iterative correction procedure by kriging using only the              
measurements provided by all the other sensors and can deduce an estimation 
error at this point

• This process is repeated for all the sensors of network 1, and the quality is
summarized by the average of the estimation errors

• Average RMSE 
over all the 2,980 
available hours: 
20,7 𝜇g/m3 for 
ordinary kriging 
18,8 𝜇g/m3 using 
external drift



Spatial RMSE-CV
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Individual RMSE 
10 to 14 for the 2nd group 
30 to 23 for the 1st group

• Pretty large the two stations in the 
middle, located in Grenoble city-
center

• Why? each station serves as a proxy 
for the other one in the CV scheme, -
- one is a station near the traffic

leading to underestimation
- the other is a background urban

station leading to 
overestimation

• Good or acceptable for the four 
other stations located on the border 
of Grenoble downtown (urban
background stations, exhibiting
more balanced scatter plots)
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More details in the paper
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