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MOTIVATION
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In France, the Building sector represents 40% of the energy consumption and 

25% of carbon dioxide emissions  renovation through isolation

Typical values of thermal resistance and repartition of french housing in 2018 



OBJECTIVE OF THE FRENCH ANR RESBATI CONSORTIUM (2017-2021)
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• Portable

• Non intrusive

• Fast (<1day)

• Level of uncertainty comparable or lower than with

a reference equipement (guarded hot box or 

guarded hot plate)

RESBATI

PROTOTYPE

To develop a prototype for the in-situ 

evaluation of the thermal performance of 

opaque walls and its associated uncertainty.

REQUIREMENTS



QUANTITY OF INTEREST: THERMAL RESISTANCE OF THE WALL 𝑹
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𝑖 : index of layer of the wall (here 𝑖 = 1,… , 4)
𝑅𝑖: thermal resistance of the layer

𝑘𝑖: thermal conductivity of the layer 

𝑙𝑖: thickness of the layer

Objective : To estimate the posterior distribution of the 𝒌𝒊.

The posterior distribution of 𝑹 is obtained with Monte Carlo sampling in the distribution of the 𝑘𝑖

𝑹 = 𝒍/𝒌

𝑘 + thickness 𝑅
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CASE STUDY



SCHEMATIC VIEW OF THE EXPERIMENTAL SETUP IN THE LNE ENERGY 

ROOM REBECCA
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side view

wall

 indirect measurement of the thermal resistance from surface temperatures and absorbed

flux measurements  inversion problem under uncertainty

portable

device

Total thickness : 30 cm

EPS : 12 cm

ENERGY ROOM



SURFACE TEMPERATURE MEASUREMENTS
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ABSORBED FLUX MEASUREMENTS
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constant after 10 hours.



EXPERIMENTAL SETTINGS USED FOR VALIDATION

10

Guarded hot plate at LNE for layer 2 : EPS (expanded polystyrene)  

Guarded hot box for the global resistance

95% confidence interval: ෠𝑅 ≈ 4.08 ± 0.86 𝑚2𝐾𝑊−1

Remark: 𝑅2 ≈ 95%𝑅

1% expanded

uncertainty!

20% expanded

uncertainty!
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BAYESIAN INVERSION MODEL



INVERSION PROBLEM TO GET THE POSTERIOR DISTRIBUTION OF {𝒌𝒊}
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Quantity of interest 𝑘𝑖

𝑇𝑠𝑒, 𝑞𝑖𝑛𝑡 𝑇𝑠𝑖

Reported measurement uncertaintyReported measurement uncertainty

𝜂

𝑦 = 𝜂 𝑋, 𝜃 + 𝜎ε

Excess variance parameter

to account for measurement noise

𝜀𝑖 ∼ 𝑁 0, 𝑢𝑖Model:



SUMMARY OF BAYESIAN UNCERTAINTY FRAMEWORK FOR INVERSION
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Take advantage of the Bayesian paradigm by assigning prior

distributions to all uncertain quantities in addition to calibration 

parameters.

Set an computational algorithm to sample from the joint posterior

distribution 𝜋 𝑋, 𝜃, 𝜎 𝑦

Ckeck for convergence of the posterior samples (autocorrelation, tests of 

convergence,…) towards the stationary distribution.



PRIOR KNOWLEDGE FOR CALIBRATION PARAMETERS 𝜽
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Boundaries on calibration parameters are usually used to facilitate the search.  

Here, prior distributions of calibration parameters are chosen rectangular.



PRIOR KNOWLEDGE FOR INPUT PARAMETERS 𝑿
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Here, measurement uncertainty is obtained from GUM uncertainty propagation.

𝑇𝑠𝑒, 𝑞𝑖𝑛𝑡 are Gaussian random variables whose uncertainty expresses deviation

from measurements.

The following error-in-variables representation is used

𝑇𝑠𝑒 = 𝑡𝑠𝑒𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 + 𝑒𝑟𝑟𝑜𝑟𝑇𝑠𝑒
𝑞𝑖𝑛𝑡 = 𝑞𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 + 𝑒𝑟𝑟𝑜𝑟𝑞𝑖𝑛𝑡

with 𝑒𝑟𝑟𝑜𝑟𝑇𝑠𝑒 ∼ 𝑁 0, 𝑢𝑇𝑠𝑒 and 𝑒𝑟𝑟𝑜𝑟𝑞𝑖𝑛𝑡 ∼ 𝑁(0, 𝑢𝑞𝑖𝑛𝑡)



PRIOR DISTRIBUTION OF 𝝈
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𝜎2 ∼ 𝐼𝑛𝑣𝑒𝑟𝑠𝑒 − 𝐶ℎ𝑖2(𝜈0, 𝑠0
2)
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RESULTS



BAYESIAN APPROACH GIVES A POSTERIOR DISTRIBUTION OF 𝑹 GIVEN ALL 

AVAILABLE INFORMATION
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The posterior distribution combines all 

uncertainty sources according to prior and 

expert knowledge and statistical modelling.

 Possibility to retrieve point estimates ෠𝑅
and 𝑢( ෠𝑅), coverage intervals

 Allows non Gaussian QoI (here slight

deviation from Gaussian in the tails)

BUT high computational price

෡𝑹

𝒖(෡𝑹)

𝟗𝟓% highest density interval

1% expanded

uncertainty!



EFFECT OF DURATION ON 𝒌𝟐 : 12 H VERSUS 24 H (COMPARISON WITH

GUARDED HOT PLATE)

20

12 h

24 h



SUMMARY OF RESULTS FOR 𝑹 (COMPARISON WITH GUARDED HOT BOX)
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12 h 24 h

Prior distribution

𝑅2

GHB 𝑅2: thermal resistance of 

the insulation layer 

determined experimentally

(guarded hot plate)



CONCLUSION AND PERSPECTIVES
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Bayesian approach is used here to propagate input uncertainties in an inversion problem, which

is in practice an issue rarely addressed, with no consensus methodology, so far up to our

knowledge.

Proposed solution : to take all uncertainty inputs as calibration parameters and to update their

posterior distribution.

The MCMC method is computationally expensive when used in combination with a numerical code.

In practice, strong autocorrelation of Markov chains may appear which makes the interpretation of

results less reliable (mostly for the posterior uncertainty).

Perspectives concern taking into account lateral fluxes when heating the wall with an improved

thermal model. Due to the prohibitive expected cost of the estimation method, surrogates of the

thermal model will be introduced.
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Thanks for your attention


