
Analysis and comparison of 
Bayesian methods for type A 

uncertainty evaluation with prior 
knowledge

Ignacio Lira



Prolegomenon
Data : 

GUM:              estimate 

                        standard uncertainty      ;    

                     

                               ⊳      formula is based on frequentist concepts 

GUM-S1:       standard uncertainty    ;   

                               ⊳      formula derived from the Bayesian paradigm

                                              •   assuming a Gaussian likelihood

                                              •   using no prior knowledge about nei-

ther  nor 

                               ⊳      Problem: evaluating  requires at least four 

observations
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Proposals - 1
Informative Bayesian Type A uncertainty evaluation for a small num-

ber of observations

         Cox and Shirono, Metrologia 54 (2017)

Appears to be the first paper that proposes solving the problem by 

taking advantage of knowledge that may be available before 

measurements.

Its authors applied Bayes' formula to a Gaussian likelihood and an 

informative prior proportional to  for  

Using some clever manipulations, they were able to derive an analytic 

expression for factor  involving the upper incomplete gamma 

function.
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Result can be easily obtained with the  Wolfram Mathematica 

© 

software
In[1]:=

Example 4.3 in C - S;

n = 2;
x = {0.9551, 0.9537};
mean = Mean[x];
s = StandardDeviation[x];
sM = 0.003;
sm = 0.001;

S = (n - 1) s2;

as =
n - 3

2
; ai =

n - 1

2
;

a =
S

2 sM2
; b =

S

2 sm2
;

phi=
n - 1

2

Gamma[as, a] - Gamma[as, b]

Gamma[ai, a] - Gamma[ai, b]

1/2

;

uGum =
s

n
;

uCS = phi uGum;

Print"uCS = " , uCS

Print"uGum = " , uGum

uGum = 0.0007

uCS = 0.0012686
uCS = 0.0012686
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Alternatively, one can use direct numerical application of Bayes theo-

rem  
In[16]:= Example 4.3 in C - S using mumerical integration; (13 s);

p0[mu_, v_] := Ifsm2 ≤ v ≤ sM2,
1

v
, 0

l[mu_, v_] :=
1

vn/2
Exp-

S + n (mu - mean)2

2 v


p1[mu_, v_] := p0[mu, v]×l[mu, v]

p2[mu_] := NIntegratep1[mu, v], v, sm2, sM2

c = (Quiet[NIntegrate[p2[mu], {mu, -∞, ∞}]])
-1;

expec = Quiet[NIntegrate[mu c p2[mu], {mu, -∞, ∞}]];
stdev =

QuietNIntegrate(mu - expec)2 c p2[mu], {mu, -∞, ∞}
1/2

;

unum = stdev;

Print"unum = " , unum

Print"uCS = " , uCS

uCS = 0.0012686

unum = 0.00126859
uCS = 0.0012686
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The method in the C-S paper requires .

But the numerical procedure applies even for one observation e.g.

In[27]:= x = 0.9551; (13 s);

p0[mu_, v_] := Ifsm2 ≤ v ≤ sM2,
1

v
, 0

l[mu_, v_] :=
1

v1/2
Exp-

(mu - x)2

2 v


p1[mu_, v_] := p0[mu, v]×l[mu, v]

p2[mu_] := NIntegratep1[mu, v], v, sm2, sM2

c = (Quiet[NIntegrate[p2[mu], {mu, -∞, ∞}]])
-1;

expec = Quiet[NIntegrate[mu c p2[mu], {mu, -∞, ∞}]];
stdev =

QuietNIntegrate(mu - expec)2 c p2[mu], {mu, -∞, ∞}
1/2

;

Print"u 1 obs = " , stdev

Print"u 2 obs = " , uCS

u 2 obs = 0.0012686

u 1 obs = 0.00190813
uCS = 0.0012686
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Proposals - 2
Bayesian methods for type A evaluation of standard uncertainty

         van der Veen, Metrologia 55 (2018) 

In this paper, its author proposes using a half-Cauchy prior  for the 

standard deviation, that is, a t-Student with one dof. I will write such 

a prior in the form .

The median of this distribution can be made equal to an available 

prior estimate of the variance.  In this way, a reasonable value for the 

parameter  can be obtained.

The resulting posterior does not have a closed form. Of course, it can 

be evaluated through MCMC, as  the paper cited above does. But as 

the following example demonstrates, it is simpler (and faster) to use 

the numerical procedure just described.
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In[37]:=

Example 4.3 using a half - Cauchy prior;

x = {0.9551, 0.9537}; (24 s);

m =
sM sm

sM + sm

2

;

A =
m

-1 + 

;

p0[mu_, v_] := (A + v)-1

l[mu_, v_] :=
1

vn/2
Exp-

S + n (mu - mean)2

2 v


p1[mu_, v_] := p0[mu, v]×l[mu, v]
p2[mu_] := NIntegrate[p1[mu, v], {v, 0, ∞}]

c = (Quiet[NIntegrate[p2[mu], {mu, -∞, ∞}]])
-1;

expec = Quiet[NIntegrate[mu c p2[mu], {mu, -∞, ∞}]];
stdev =

QuietNIntegrate(mu - expec)2 c p2[mu], {mu, -∞, ∞}
1/2

;

uCauchy = stdev;
Print["uCauchy = ", uCauchy]
Print["uCS = ", uCS]

uCS = 0.0012686

uCauchy = 0.531866
uCS = 0.0012686

uCS = 0.0012686
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Proposals - 3
A simple method for Bayesian uncertainty evaluation in linear models

         Wübbeler, Marschall and Elster, Metrologia 57 (2020)

This paper applies to measurement models of the form , 

where  represents a linear combination of type B quantities. But by 

taking  (and ),  we recover our measurement model.

The authors assume an inverse gamma prior for the variance of the 

sampling distribution of repeated measurements of . If in addition 

we ignore previous knowledge about the value of the measurand, we 

are left with 

The authors suggest , which produces a weakly informative prior 

with neither finite mean nor variance.With this choice, the median of 

the distribution, equal to , can again be taken as the prior esti-

mate of the variance, if available. In this way the value of parameter  

is obtained.
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In[51]:=

Example 4.3 using an inverse gamma prior; (11 s);

x = {0.9551, 0.9537};
a = 1;

m =
sM sm

sM + sm
;

b = m Log[2];

p0[mu_, v_] :=
1

v1+a
Exp-

b

v


l[mu_, v_] :=
1

vn/2
Exp-

S + n (mu - mean)2

2 v


p1[mu_, v_] := p0[mu, v]×l[mu, v]
p2[mu_] := NIntegrate[p1[mu, v], {v, 0, ∞}]

c = (Quiet[NIntegrate[p2[mu], {mu, -∞, ∞}]])
-1;

expec = Quiet[NIntegrate[mu c p2[mu], {mu, -∞, ∞}]];
stdev =

QuietNIntegrate(mu - expec)2 c p2[mu], {mu, -∞, ∞}
1/2

;

ugamma = stdev;
Print["ugamma = ", ugamma]
Print["uCauchy = ", uCauchy]
Print["uCS = ", uCS]

uCS = 0.0012686

uCauchy = 0.531866

ugamma = 0.0228108
uCS = 0.0012686
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However, the inverse gamma prior produces a marginal posterior for 

the measurand equal to a scaled and shifted t-distribution , whose 

variance can be calculated as

Verification:

In[67]:= Print
2 b + (n - 1) s2

n (n + 2 a - 3)


Print[ugamma]

0.0228108

0.0228112
uCS = 0.0012686

From this formula we see that the inverse gamma prior can again be 

used if there is only one observation, but in that case the shape param-

eter  has to be greater that 1.
uCS = 0.0012686
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Proposals - 4 (last)

 An informed type A evaluation of standard uncertainty valid for any 

sample size greater than or equal to 1

         Carobbi, Acta Imeko 11 (2022)

This paper, which seems to be the most recent contributor to this dis-

cussion, proposes using a scaled inverse chi-square distribution as an 

informative prior:

where  is the prior variance and  is the associated number of 

degrees of freedom. Clearly, this distribution describes the same data 

structure as the inverse gamma, but with a different parameterization, 

the relation between the two parameters being

 and .
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In[69]:=

Example 4.3 using a scaled inverse chi -square distribution; (14 s);

x = {0.9551, 0.9537};
nu = 2 a;

s02 =
b

a
;

p0[mu_, v_] :=
1

v1+nu/2
Exp-

s02 nu

2 v


l[mu_, v_] :=
1

vn/2
Exp-

S + n (mu - mean)2

2 v


p1[mu_, v_] := p0[mu, v]×l[mu, v]
p2[mu_] := NIntegrate[p1[mu, v], {v, 0, ∞}]

c = (Quiet[NIntegrate[p2[mu], {mu, -∞, ∞}]])
-1;

expec = Quiet[NIntegrate[mu c p2[mu], {mu, -∞, ∞}]];
stdev =

QuietNIntegrate(mu - expec)2 c p2[mu], {mu, -∞, ∞}
1/2

;

Print["ugamma = ", ugamma]
Print["uchi2 = ", stdev]

uchi2 = 0.0228108

ugamma = 0.0228108
uCS = 0.0012686
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So, mathematically, it doesn’t matter whether one uses the inverse  

or the inverse prior. However, the proposal by Carobbi is more intu-

itive, because as Gelman et. al. point out in their famous book, the 

scaled inverse  can be thought of as providing the information equiv-

alent to  observations with average squared deviation . These two 

parameters may be available from prior experiments.
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Closure
So, what conclusions can we draw from this exposition?

1) The Cox-Shirono approach produces comparatively very small uncer-

tainties. This appears to be the result of a strongly informative prior. 

Perhaps another form of the function supported on the inter-

val  might produce more reasonable results.

2) This comment elicits a query: would there be a way of quantifying 

the “informativeness” of a prior?

3) For generality, I wrote the prior as , even though in none of 

the proposals it depends on . That is to say, I have assumed that 

there is absolutely no prior information on the value of the measur-

and. Evidently, this assumption simplifies matters, but it is not very 

reasonable. A better approach is the one used by Wübbeler et. al. , 

who propose a NIG prior.

4) If one decides to keep with the  assumption of constant , the 

inverse  and inverse priors produce a simple algebraic formula for 

the standard uncertainty, usable by all practitioners. However the lat-

ter prior may be preferred because  its parameters have an intuitive 

interpretation.

5) In simple cases, the Mathematica software allows direct numerical 

exploration of  other priors, such as plotting the marginal posteriors 

or computing credible intervals, without the need to use MCMC or 

other alternatives.
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See also

Guidance on Bayesian uncertainty evaluation for a class of GUM mea-

surement models    Demeyer, Fischer and Elster , Metrologia 58 (2021)

Simple informative prior distributions for metrology

O’Hagan and Cox, Unpublished (2021)

Uncertainty evaluations from small datasets

Stoud, Pintar and Possolo, Metrologia 58 (2021)

Rejection sampling for Bayesian Uncertainty evaluation using the 

Monte Carlo techniques of GUM-S1

Marschall, Wübbeler and Elster , Metrologia 59 (2022)

For a pdf copy of this presentation please send an email to 

ilira@ing.puc.l
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