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As an introduction...

Quantifying and separating uncertainties in model-based decision-helping
processes (often through Bayesian and machine/deep learning approaches)

computing cautious assessments
conducting risk and reliability studies

Dealing with measurement and model uncertainties seems to bring me closer to the
concerns of meteorologists

A shared interest ?

Selecting good data / good measurements to say something about the (claimed)
behavior of a system / model, in a broad (but formalized) sense
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Thanks

Works and thoughts shared with several statisticians : Fabrizio Ruggeri, Adrian Raftery,
Anne Philippe, Bertrand Iooss, Mélanie Blazère, Sophie Ancelet, Eric Parent, etc.
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Being Bayesian ? A rationale

Selecting a good measurement is a decision that might be formalized as follows

Let Y = yi be an (indirect) measurement of a quantity X = xi , understood as

yi = gΣ(xi , εi )

where

gΣ is an operator modeling a measurement process Σ

ε ∼ P(ε) is a random "noise" summarizing the influence of external factors

For a same (hidden) source X = xi , several values of yi due to εi

Example : lung cancer screening by thoracic scanner

Source : [32]

X = tumor features

Y = table of pixels

ε = patient position +
setting chosen by the
operator
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Being Bayesian ? A rationale

Based on the GUM, from repeated observations Y (x), assess the quality of a
measurement Y by estimating (for instance) the conditional variance

Var[Y |X = x ] =

∫
ℓ(gΣ(x , ε))dP(ε) with ℓ(u(ε)) = Eε[u

2(ε)]− E2
ε[u(ε)]

= indicator of measurement uncertainty in X = x

Assuming X ∼ PX , a global indicator of quality for Σ could legitimately be

QΣ = EX [Var[Y |X ]]

(note that is can be estimated only with a sample Y = {Y ij (xi )}i,j without knowing the real xi )

Now, having two competing measurement processes Σ1 and Σ2, may we compare the
QΣi to check if ”Σ1 is better than Σ2" ?
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Being Bayesian ? A rationale

What we want from using each Σi is to reconstruct X , or rather PX (in a concern of
generality), using Y Σi (stochastic inversion)

Classical approach.

1 Assume X ∼ PX (.|θ) parameterized by θ (e.g., a multivariate Gaussian)

2 Estimate θ from Y Σi (e.g., using missing data, EM-type algorithms [13, 5])

θ ⇒ θ̂(Y Σi )

Then

QΣi = QΣ

(
θ̂(Y Σi )

)
but we cannot be sure to have a total order between the QΣi [44]
⇔ we cannot properly compare Σ1 and Σ2
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Being Bayesian ? A rationale

What we want from using each Σi is to reconstruct X , or rather PX (in a concern of
generality), using Y Σi (stochastic inversion)

Bayesian approach.

1 Note that θ is a summary of the features of X ∼ PX , endowed with epistemic
uncertainty

2 Model this uncertainty by defining technically θ as a random variable with prior
measure

θ ∼ π(θ)

3 Estimate the posterior π(θ|Y Σi ) (e.g., using Monte Carlo-type algorithms [19, 20])

π(θ) ⇒ π(θ|Y Σi ) (Bayesian updating)

Then

QΣi = Eθ [EX [Var[Y |X ]|θ] |Y Σi )]

It is a Bayes estimator then we are sure to get a total order between the QΣi

⇔ we can compare Σ1 and Σ2
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Being Bayesian

The Bayesian paradigm can be useful to have a global quality and correctly treat
uncertainties

And for selecting good measurements ? Does the prior requires significant work ?
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The point of view of a reliability engineer

Analogy

Testing a claim on an industrial component or system is somewhat similar to testing
whether that component or system can withstand certain stresses

Probably a limited analogy, but can be
helpful

(or maybe Abraham Maslow)
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The point of view of a reliability engineer

Analogy

Testing a claim on an industrial component or system is somewhat similar to testing
whether that component or system can withstand certain stresses

In each case, how designing good experiments (ie to have good quality measurements) ?
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Designing good (informative) experiments

9 / 44



Example : A property of steels used in industrial vessels

Fracture toughness of steel (FTOS) characterizes the capacity of the material to resist
to cracking through plastic deformation when a load is applied (e.g., a transient cooling such as

water injection)

It is part of the most influential material attributes in structural safety studies [46].

Source : [35]
Source : https://www.substech.com
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Destructive testing to get measurements

Charpy impact tests [4] ⇒ indirect toughness values (megapascal square root meter) with
different qualities

Source : https://theconstructor.org

European FTOS database (ferritic steels) from

Oak Ridge National Laboratory (ASTM E399-90 [3])
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How proposing very informative (but costly) measurements for our specific steel ?

Goal
Checking if the brittle-ductile transition temperature T0 is as claimed by the supplier

Source : [36]

12 / 44



How proposing very informative (but costly) measurements for our specific steel ?

T0 is a deterministic function of the distribution P of FTOS

⇕
It is tantamount to select a (very) limited of measurements

that offer the best possible knowledge on P (with lowest uncertainties)
⇔ the most informative measurements

If P were known / simulable, quantization techniques like Maximum Mean Discrepancy
minimization could be used (ie., using kernel herding, grid search or Sequential Bayesian
Quadrature [42])
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Inspired by [14], define a Bayesian experimental design

1 Consider a well recognized theoretical statistical model (e.g., from weakest link theory [26])

linking a FTOS measure y j
i ∈ Ω at a given temperature Tj and T0 = g(θ)

P(Y j
i < y |Tj , θ) = 1 − exp

−

{
y j
i − α)

µ(Tj)

}β
 (simple Master Curve [47])

with µ(Tj) = λ1 + λ2 exp(λ3Tj) and θ = (α, {λi}i , β)
2 Elicit a good prior distribution Π(θ)

3 Formalize a design of experiments for fixed n standard Charpy specimen [25 mm]

ε =

{
J,

{
T1 T2 . . . TJ

η1 η2 . . . ηJ

}}
with ηj=

nj
n
∈ [0, 1] for all j=1, . . . , J and

∑J
j=1 ηj=1

For tractability, relax the assumption n × ηj ∈ IN ⇒ find a probability measure
η=(η1, . . . , ηJ) with optimal J∗ and temperatures T ∗

j
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Last ingredient : an utility function

U1(ε) = expected utility function quantifying the expected gain in knowledge about θ
provided by data collected under the experimental design ε

U2(ε) = expected utility function quantifying the opposite of the expected experimental
cost under ε

Generic (compound) weighted (dimensionless) utility [2] (similar idea in [25])

U(ε) = ω ×∆U1(ε) + (1 − ω)×∆U2(ε)

where
∆Uk(ε) =

Uk(ε)− Uk(ε0)

|Uk(ε0)|
for k = 1, 2

∆Uk(ε) = relative change in expected utility

ε0 = fixed baseline experimental design for which the total expected utility U(ε0)
is set to zero

for instance (using typical temp values within the brittle-ductile transition zone)

ε0 =

{
4,
{

−150 −100 −50 0
0.25 0.25 0.25 0.25

}}
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Last ingredient : an utility function (details)

1 Quantifying the opposite of the number of days of work required for collecting
data at a design point :

U2(ε) = −
J∑

j=1

nj ×
(
2 − 1{T−<Tj<T+}

)
where T−=−130◦C , T+ = −60◦C

(one day of work to make a test when T ∈ [T−,T+] but two days to homogenize the room temperature in

more extreme conditions)

2 Quantifying the expected gain in knowledge provided by data collected under an
experimental design ε about θ

[Ex.1] Posterior-prior KL divergence ⇒ all dimensions of θ

U1
1 (ε) =

∫
Ω

∫
Θ

log
π(θ|y, ε)
π(θ)

π(θ|y, ε)dθdy
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Last ingredient : an utility function (details)

1 Quantifying the opposite of the number of days of work required for collecting
data at a design point :

U2(ε) = −
J∑

j=1

nj ×
(
2 − 1{T−<Tj<T+}

)
where T−=−130◦C , T+ = −60◦C

(one day of work to make a test when T ∈ [T−,T+] but two days to homogenize the room temperature in

more extreme conditions)

2 Quantifying the expected gain in knowledge provided by data collected under an
experimental design ε about θ

[Ex.2] Opposite of the quadratic loss function ⇒ selected linear combination of dimensions
of θ

U2
1 (ε) = −

∫
Ω

∫
Θ

(θ − θ̂)TA(θ − θ̂)f (y, θ|ε)dθdy

with θ̂ = Bayesian point estimate of θ and A symmetric nonnegative definite matrix
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Asymptotic approximations [39]

One may write

Uk
1 (ε) = EYEθ|Y

(
uk(θ,Y, ε)

)
with

{
u1(θ, y, ε) = log π(θ|y, ε)
u2(θ, y, ε) = −(θ − θ̂)TA(θ − θ̂)

}
and under the asymptotic approximation (Bernstein-von Mises)

θ|y, ε ≃ Nd

(
θ̂,Σ(θ̂, ε) = [nI (θ̂, ε) + R]−1

)
(with θ̂ = posterior mode, I (., .) = Fisher matrix and R = prior precision matrix), it comes

Eθ|Y
(
u1(θ,Y, ε)

)
≃ cte +

1
2
log
(
det(Σ(θ̂, ε)−1)

)
Eθ|Y

(
u2(θ,Y, ε)

)
≃ −tr(AΣ(θ̂, ε))

Maximizing the expected Eθ|Y
(
u1(θ,Y, ε)

)
⇔ D−optimal design

Maximizing the expected Eθ|Y
(
u2(θ,Y, ε)

)
⇔ A−optimal design

See [31, 24] for convergence results to sequential maximum likelihood-based adaptive designs for treatment

allocation )
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Our Fisher matrix

I (θ, ϵ) =


I11 I12 I13 I14
I12 I22 I23 I24
I13 I23 I33 I34
I14 I24 I34 I44

 .

with

I11 = (β − 1)2Γ
(

1 −
2

β

) J∑
j=1

nj

µ(Tj )
2

I22 = β
2

J∑
j=1

nj

µ(Tj )
2

I33 = β
2

J∑
j=1

nj exp
2(λ3Tj )

µ(Tj )
2

I44 = β
2
λ

2
2

J∑
j=1

njT
2
j exp2(λ3Tj )

µ(Tj )
2

I12 = β
2
(

1 −
1

β

)
Γ

(
1 −

1

β

) J∑
j=1

nj

µ(Tj )
2

I13 = β
2
(

1 −
1

β

)
Γ

(
1 −

1

β

) J∑
j=1

nj exp(λ3Tj )

µ(Tj )
2

I14 = β
2
λ2

(
1 −

1

β

)
Γ

(
1 −

1

β

) J∑
j=1

njTj exp(λ3Tj )

µ(Tj )
2

I23 = β
2

J∑
j=1

nj exp(λ3Tj )

µ(Tj )
2

I24 = β
2
λ2

J∑
j=1

njTj exp(λ3Tj )

µ(Tj )
2

I34 = β
2
λ2

J∑
j=1

njTj exp
2(λ3Tj )

µ(Tj )
2
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Application [2]

1 Choose a Gaussian prior computed as an approximation of a posterior from
European FTOS data (flat baseline prior)

2 Solve the problem by computational techniques like simulated annealing [2] or
more recently the approximate coordinate exchange algorithm [40]

ε0 =

{
4,

−150 −100 −50 0
0.25 0.25 0.25 0.25

}
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Application [2]

ω u1 J∗ η∗ T∗ Ũ(ϵ∗)
1 D J=3 (0.55,0.27,0.18) (-213.84,-97.52,17.80) 0.046

A1 J=2 (0.31,0.69) (-213.80,9.21) 0.156
A2 J=2 (0.58,0.42) (-213.70,12.48) 0.102

0.9 A1 J=2 (0.31,0.69) (-213,91,7.62) 0.126
A2 J=3 (0.54,0.10,0.36) (-213.96,-60.21,17.71) 0.079

0.5 A1 J=3 (0.49,0.42,0.09) (-129.51,-60.10,17.92) 0.164
A2 J=2 (0.92,0.08) (-129.97,-60.37) 0.200
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Measurement quality problems

Charpy impact tests are defined by an intensity η that may be insufficient (η < η0) or
too high (η > η1) ⇒ Fracture too shallow or deep

Taking account of this experimental difficulty by considering rather1 − exp

−

{
y j
i (η

j
i )− α)

µ(Tj)

}β
1[η0,η1](η

j
i )

as the cdf of an acceptable measurement y j
i (providing information on θ)

Uncertain parameters (η0, η1) are nuisance parameters from the point of view of the
statistician that wants to estimate θ

A prior π(η0, η1) should be chosen within the whole design approach to integrate the
limits of the measurement device
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Avoiding pseudo-Bayesian designs if possible

More generally, the addition of noises and measurements limits will decrease the
quantity of information yielded by planned experiments

Asymptotic assumptions and prior (Gaussian) assumptions behind A- and
D-optimal design criteria can strongly be not realistic

In such cases ⇒ bad pseudo-Bayesian designs :

[27] for generalized linear situations
[25] for clinical trials with low convergence of the optimization algorithms (effect of highly

concentrated pseudo-posterior)

Modern computational techniques can tackle the problem of computing repeatedly
posteriors to solve the optimization problem of the design ε

multi-stages mixing stochastic gradient optimisation and automatic differentiation [41]
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Good prior modeling

We are technically "allowed" to focus now on prior modeling

Priors ("best guesses") can significantly help to produce useful designs (e.g., [8]
for clinical studies)

All the more when the planned design is small-sized (since costly)
Remind that priors are used for the randomized planning stage, but they are not required for inference

Producing defensible priors take part in a more general, growing approach of questioning
the formalization of prior choices

A. Gelman and J. Sprenger on the objectivity and reproducibility of Bayesian
assessments : [Holes in Bayesian Statistics] [22, 45, 23]

Contemporary concerns for the auditability of deep learning [18] and artificial
intelligence [48]
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Towards auditable prior modeling : a key concern for the community

Goal

Produce clear, accountable, repeatable, formal rules for informative Bayesian modeling,
consistent with the reality of a prior uncertain information

A (very) long history in objective Bayes [7]
e.g., Jeffreys prior, reference priors (and variants), maxent priors, MDIP, etc. dedicated to specific tasks or
not

⇒ A quick view of the most shared contemporary approaches and challenges
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Some (old but) growing shared views

Posterior prior-type assumption [33, 15, 37, 43] ⇒ algebraic structure

Denote ~xm = (x̃1, . . . , x̃m) ∼ f (x |θ) an imaginary iid sample bringing prior
information

Let πJ(θ) an objective (noninformative) prior for f (x |θ) with support Θ

Then an "ideal" prior is (if integrable)

π(θ) = πJ(θ|~xm)

Prior information assumption [6, 21, 29, 34] ⇒ information content

The informative content of ~xm is mostly provided through a set K of estimates of
marginal prior predictive quantiles (Berger-Kadane assumption)

PfK (Xi < xi,αij ) = αij
ideally
=

∫
P(Xi < xi,αj |θ)π(θ) dθ

for i = 1, . . . , d = dimX
[Existence ensured and interpretability through expected pinball loss function [28]]
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Consequences

1 - If π(θ) = πJ(θ|~xm) is tractable

it provides a natural (coherent) dependence structure on θ

π(θ) ↑ ⇒ det I (θ) ↑

it defends a reasonable way of aggregating M independent priors

π(θ) ∝

(
M∏
i=1

f (~xmi |θ)

)
πJ(θ) (logarithmic pooling [16])

Example

f ∈ exponential family, usual choice for πJ ⇒ π is conjugate and writes as

π(θ) = π(θ|t(~xm))

where t(.) is a sufficient statistics of dimension < m
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Two simple illustrations (in risk analysis) of prior intern coherence

A - Exponential model

Let f (x |θ) = θ exp(−θx) and Θ = IR+
∗ and x > 0

Then I (θ) = 1/θ2

We should avoid any prior π(θ) such that ∃c > 0 and c < ∞ and

π(θ)

θ2
θ→∞−−−→ c
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Two simple illustrations (in risk analysis) of prior intern coherence

B - Weibull model

θ = (η, β) ∈ IR+
∗ × IR+

∗ and x > 0

f(x|θ) = β
η

(
x
η

)β−1
exp

(
−
{

x
η

}β
)

det I (θ) ∝ β−1ηβ−1

In survival analysis : high β ⇔ short Mean Time To Failure, weak η

Light grey : isodensity curves of a coherent prior
Dark grey : isodensity curves of an incoherent prior
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Consequences

2 - If π(θ) = πJ(θ|~xm) is untractable, consider a variational approximation
hyperparameterized by the virtual size m

π(θ|m, t) ≃ πJ(θ|~xm)

where t is a summary statistics

3 - Given m, in both previous situations, calibrate t using a discrepancy D

t∗(m) = argmin
t

D (fK , f (.|m, t))

where

f (x |m, t) is the feasible prior predictive measure

f (x |m, t) =

∫
Θ

f (x |θ)π(θ|m, t) dθ

fK is the "empirical" measure provided by the available marginal quantiles on X
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Illustration : variational approximation for a nonconjugate Gamma process prior [12]

A crack size Zk,t on a component k is monotonically increasing with time t

The increments (assumed independent) Xk,i = Zk,ti − Zk,ti−1 are assumed to obey
gamma laws

fα(t−s),β(x) =
1

Γ(α(t − s))
· x

α(t−s)−1e−
x
β

βα(t−s)
1{x≥0}
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Illustration : variational approximation for a nonconjugate Gamma process prior [12]

Consider Jeffreys’ prior πJ(α, β) ∝ 1
β

√
αΨ1(α)− 1

π(θ) beneath is the first-order (Taylor) approximation of the posterior of an imaginary
sample of crack increments ~xm = (x̃1, . . . , x̃m) observed at times ~tm = (t̃1, . . . , t̃m) :

β|α ∼ IG (αmt̃e,1,mx̃e)

α ∼ G (m/2,mt̃e,2)

with the meanings

t̃e,1 =
1
m

m∑
i=1

t̃i (mean observation time)

x̃e =
1
m

m∑
i=1

x̃i (mean increase)

t̃e,2 =
1
m

m∑
i=1

t̃i log

m∑
j=1

x̃j/x̃i

m∑
j=1

t̃j/t̃i

(tuning hyperparameter)

Other similar ideas can come from the rich literature on Edgeworth expansions for
posterior densities [30]
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Which discrepancy D for matching given m ?

The "expert" distribution fK is supposed to be only known by several marginal quantiles

Pfk (Xi < xi,αj ) = αj

for i = 1, . . . , d = dimX

The feasible prior predictive measure

f (x |m, t) =

∫
Θ

f (x |θ)π(θ|m, t) dθ

can be continuous

The (usual) KL divergence cannot be used for comparing two distributions that are not
absolutely continuous with respect to each other

⇒ use the Wasserstein distance, that allows to measure the “closeness” of two measures
defined on arbitrary sets
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The Wasserstein distribution

The p-Wasserstein distance between fK and f on respective supports XK and X is the
quantity defined by

Wp(fK , f ) = inf
fc∈Πc (fk ,f )

{∫
XK×X

∥x − y∥ppdfc(x , y)
}

(1)

where ∥.∥p denotes the ℓp norm and Πc(fK , f ) the set of probability couplings, with fK
and f as its marginals, i.e.,

Πc(fK , f ) =

{
fc ∈ P(XK ×X ) |

∫
X
dfc(x , y) = f (dx),

∫
XK

dfc(x , y) = fK (dy)

}
,

Theorem ([28] using a result from [1])

If fk and f share the same dependence structure (copula), then

W p
p (fK , f ) =

d∑
i=1

W p
p (fK ,i , fi ). (2)
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The 2-Wasserstein choice for the calibration

Working on the real line (each dimension of X ), the choice of the 2−Wasserstein
distance (W2) leads to

W2(fK ,i , fi ) =

√∫ 1

0

(
F→
K ,i (x)− F→

i (x)
)2

dx , fK ,i , fi ∈ P2(R)

, with F→ denoting the generalized inverse cdf, which

metricizes weak convergence on P2(R) ⇔ W2 is a measure of proximity on a broad
set of probability measures

simplifies solving

t∗(m) = argmin
t

W2 (fK , f (.|m, t))

by

estimating the F→
K ,i using isotonic polynomials between marginal

quantiles, with controlled regularity, which requires to solve a convex
quadratic program
using gradient descent

Technical details in our recent preprint [28]
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Another simple example [11]

Consider the Fréchet distribution (used for extreme value analysis)

P(X < x |θ) = exp

{
−
(x − µ

νξ

)−1/ξ
}
,

with θ = (µ, ν, ξ) ∈ IR × IR∗
+ and x ≥ µ

Variational approximation of πJ(θ|~xm)

With πJ = BB’s reference prior, an approximate posterior prior of imaginary data of size
m is

ν|µ, ξ ∼ G (m, s1(µ, ξ)) ,

ξ|µ ∼ IG (m, s2(µ)) ,

π(µ) ∝
1{µ≤xe1}

(xe2 − µ)msm2 (µ)

where µ < xe1 < xe2 and

s1(µ, ξ) = m(xe1 − µ)−1/ξ,

s2(µ) = m log

(
xe2 − µ

xe1 − µ

)
.
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Calibration from quartile specifications

Virtual size m xe1 xe2 Order of prior predictive quartiles
(75,100,150)

2 95.30 138.39 [24%, 49%, 74%]
3 91.22 136.93 [23%, 51%, 74%]
4 89.18 135.10 [24%, 50%, 74%]
5 87.72 133.95 [24%, 51%, 75%]
6 87.65 133.88 [24%, 50%, 75%]
7 87.14 133.26 [25%, 50%, 74%]
10 86.63 132.65 [25%, 51%, 75%]
15 85.11 132.24 [26%, 50%, 75%]

Close results obtained with Cooke’s criterion (a fully discretized version of KL)
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Towards auditable priors

These elements are part of a broad methodological program to build robust and justified
formal rules

It is clear that many other approaches can be used to elicit priors (e.g., using generative
algorithms)

Nonetheless, having such rules can help to quantify the weight of prior information and
shrink subjectivity within specific hyperparameters
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I’ve not talked about many other wished/required properties and remaining problems

For instance :

Q-vague convergence property [9] ⇒ constraints on algebraic structure

A sequence of (variational) priors (πm)m indexed by m should converge to πJ in the
q−vaguely Radon sense :

∃ {am}m ∈ IRm s.t. ∀ function h with compact support,

lim
m→0+

∫
hd(amπm) =

∫
hdπ.

Others :

1 Prior-data agreement or conflict ⇔ constraints on calibration [17, 10]

2 Estimating the Effective Sample Size m for complex variational situations [43, 38]

3 Controlling the errors of prior approximations

4 etc.
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Key messages

Producing priors is certainly useful to guide experiments in view of improving the
quality of measurements

Disposing of a clear corpus of rules would be nice, but it’s hard

Published Bayesian workflows seem insufficient today

The research landscape on the subject seems still very fragmented, despite the
many tools and methods available

Ongoing work on several points of this "program", motivated by increasingly
pressing questions about the overall intelligibility of quantification and the
management of uncertainties
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Thank You !
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