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Context and Motivation

Inference of hidden parameters: Bayesian Inverse
Problem
Given a forward map u : RM → RJ and noisy observations
δ = u(y∗) + η ∈ RJ with centered additive Gaussian noise
η ∈ N (0,Σ), the Bayesian inverse problem reads

πy |δ(y) = Z−1L(y ; δ)π0(y)

with data likelihood

L(y ; δ) = exp
(

−1
2∥δ − u(y)∥2

Σ−1

)
and normalization constant Z = Eπ0 [L(•; δ)].

Idea
If h : RM → R is easy to approximate for M ≫ 1 we can use this to construct u = exp(h)
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Approach and Setting for Exponentiation

PDE and Galerkin projection
For f (y) = exp (h(y0)) ∇h(y) and arbitrary y0 ∈ RM , u(y) = exp (h(y)) − exp (h(y0)) is the solution of

∇u − u ∇h = f , and u(y0) = 0.

The variational form for B(w) = ∇w − w ∇h and X = {w ∈ HK (RM , π) : w(y0) = 0} reads:

Find u ∈ X such that ⟨B(u)m, v⟩L2(RM ,π) = ⟨fm, v⟩L2(RM ,π) for all m = 1, ... , M and v ∈ L2(RM , π).

original idea
u(y) = exp h(y) is the solution of the IVP

u′(y) = h′(y)u(y), and u(y0) = exp h(y0)

different approach
We can also use a different ansatz: for a, b ∈ R

u′′ = [h′′ + (h′)2]u, and u(a) = exp h(a), u(b) = exp h(b)
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Energy Norm and Error Bounds

Lemma (energy norm)
B : X → V is injective (if B(Va) ⊆ Vt) and ∥w∥B := ∥B(w)∥L2(π) is a norm on X

Relation to other norms

M = 1 and h ∈ W 1,∞(R) ⇝ ∥u − wN∥B ≤ C∥u − wN∥H1(π)

(+) π Gaussian and |h′(y) − y/2| ≥ ε ⇝ ∥u − wN∥L2(R,π) ≤ ε−1∥u − wN∥B

Theorem (equivalence of continuous residual and energy error)
u ∈ X solution of ⟨B(u), v⟩ = ⟨f , v⟩ for f (y) = exp h(y0) ∇h(y) ∈ Vt

∥u − wN∥B = ∥f − BwN∥2 for all wN ∈ Va

• equivalence (efficiency and reliability) with constant 1
• operators can be represented efficiently in high dimen-

sions (Tensor Trains)
• no computational overhead when using Galerkin ap-

proach with TTs

• bounds hold for arbitrary discrete function
• check error in iterative schemes
• use theory to check error in other approximation schemes
• similar for other holonomic functions (polynomials,

rational functions, sin, cos, Bessel functions, erf, ... )
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Experiment: Exponentiation of log-Likelihood
Forward map u solution to − ∇x ·(exp(γ(x , y)) ∇x u(x , y)) = 1, approximation uN and
observation δ, with Σ = 10−6I, let

L(y) = exp
(

−1
2∥δ − u(y)∥2

Σ−1

)
and L̂(y) = exp

(
− 1

2∥δ − uN(y)∥2
Σ−1︸ ︷︷ ︸

ℓN (y)

)
.

For samples {y (i)} reconstruct uN with (y (i), u(y (i))) and LN with (y (i), L(y (i))).
Consider the errors

Res(wN) = ∥f − BwN∥2 and εw (wN) = 1
NMC

NMC∑
i=1

∥w(y (i)) − wN(y (i))∥
∥w(y (i))∥ .

M Res(LN) Res(LG) εu(uN) εL(LN) εL(LG) εL̂(LG)

5 8.23 · 10−6 8.46 · 10−7 1.86 · 10−2 1.19 · 10−4 2.57 · 10−4 2.79 · 10−6

10 1.06 · 10−5 1.06 · 10−6 1.87 · 10−2 1.13 · 10−4 2.69 · 10−4 6.75 · 10−6

20 1.18 · 10−5 8.12 · 10−7 2.02 · 10−2 1.06 · 10−4 2.97 · 10−4 4.97 · 10−6

30 1.59 · 10−5 2.96 · 10−6 2.26 · 10−2 1.13 · 10−4 3.68 · 10−4 2.64 · 10−6

40 1.92 · 10−2 5.40 · 10−3 2.32 · 10−2 1.36 · 10−4 7.12 · 10−4 3.14 · 10−5

u

uN

ℓN

LG LN

εL(LN ) εL(LN )

εu(uN )

εL̂(LG)
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Conclusion

Summary:
• non-intrusive (only requires TT represenation of h)

• freedom in choice of PDE (e.g. second-order problem) and
thus of energy norm

• problem adaptable choice of initial condition / RHS of PDE

• free, reliable and efficient error estimator for any discrete
function

• generalization to other holonomic functions (algebraic
functions, sin & cos, sinh & cosh, logb, erf, generalized
hypergeometric function, Bessel functions, . . . )

• analysis easily extendible to other functions / PDEs
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Efficient Implementation in Tensor Train Format

Use first-order optimality criterion:

uN = arg min
wN ∈Va∩X

∥f − BwN∥2
2 ⇝ W uN = b with W :=

M∑
m=1

B⊺
mBm and b :=

M∑
m=1

B⊺
mf m

We have Bm = Dm − Hm and f m ∼ Dmh with:

Dm

d

q

= I

d1

q1

I

dm−1

qm−1

D

dm

qm

I

dm+1

qm+1

I

dM

qM

Hm

d

q

=

h1
r1

hm−1

rm−2
hm

dh,m

rm−1
hm+1

rm rm+1
hM

rM

D

τ

dh,1

q1
d1

τ

dh,m−1

qm−1
dm−1

τ

dh,m

qm
dm

τ

dh,m+1

qm+1
dm+1

τ

dh,M

qM
dM

Hence rank(Bm) = rank(h) + 1 and rank(f m) = rank(h)

Laplace-like structure of W and b yields: rank(W ) = 2 (rank(h) + 1)2 + 1 and rank(b) = 2 rank(h) (rank(h) + 1)



Assembly of Discrete System

Basic TT Operators:

i) differentiation: Dm = I⊗(m−1) ⊗ D ⊗ I⊗(M−m) with D[i , j] := ⟨pi , p′
j ⟩L2(R,πm)

ii) multiplication by ∂mh: Hm[µ, ν] =
∑r

k=1
∏M

j=1 Hm,j [kj , µj , νj , kj+1] with τ i ,j,k = ⟨pipj , pk⟩L2(R,πm)

Hm,j [kj , µj , νj , kj+1] =
dh∑
i=1

τ µj ,νj ,ihj [kj , i , kj+1] and Hm,m[km, µm, νm, km+1] =
dh∑

i1,i2=1
τ µm,νm,i1D[i1, i2]hm[km, i2, km+1]

Partial Derivative Operators: Bm := Dm − Hm and f m := exp (h(y0)) Dm h

Quadratic System: W u = b for W := PP⊺ +
∑M

m=1 B⊺
mBm and b :=

∑M
m=1 B⊺

mf m

i) rank-1 basis evaluation tensor: P ∈ RdM
a given by P[µ] = Pµ(y0)

ii) sum of partial derivative operators: S =
∑M

m=1 B⊺
mBm (C j := Bm,j for any m ̸= j)

S1 =
[
B⊺

1,1B1,1 C⊺
1 C1

]
, S j =

[
C⊺

j C j 0
B⊺

j,jBj,j C⊺
j C j

]
, and SM =

[
C⊺

MCM
B⊺

M,MBM,M

]

iii) sum of partial derivative RHS:

b1 =
[
B⊺

1,1f 1,1 C⊺
1 g1

]
, bj =

[
C⊺

j g j 0
B⊺

j,j f j,j C⊺
j g j

]
and bM =

[
C⊺

MgM
B⊺

M,Mf M,M

]



Second Order System and Energy Norm

For y ∼ U([0, 1]) consider the second order system

w ′′ = (h′′ + (h′)2) w with w(y1) = exp h(y1) and w(y2) = exp h(y2).

Let h̃ = h′′ + (h′)2 and
c(y) = exp (h(y1)) y2 − y

y1 − y2
+ exp (h(y2)) y − y1

y1 − y2
.

Then c ′′ = 0, c(y1) = −exp (h(y1)) and c(y2) = −exp (h(y2)) and it follows, that u = w + c solves

−u′′ + h̃ u = f with u(y1) = u(y2) = 0

for f = h̃ c. Assuming 0 < ȟ ≤ h̃(y) ≤ ĥ < ∞ for a.a. y ∈ [0, 1], the weak formulation reads

B(u, v) = ⟨f , v⟩ for B(u, v) = ⟨u′, v ′⟩ + ⟨h̃ u, v⟩.

For the energy norm induced by B it holds

min{1, ȟ}∥w∥H1 ≤ ∥w∥B ≤ min{1, ĥ}∥w∥H1 .



Diffusion Coefficient of Lognormal Darcy Equation

As a model problem we use a(x , y) = exp
(∑L

ℓ=1 γℓ(x)yℓ

)
with

γℓ(x) = 9
10ζ(2)ℓ−2 cos

(
2πβ1(ℓ)x1

)
cos

(
2πβ2(ℓ)x2

)
,

where β1(ℓ) = ℓ − k(ℓ) k(ℓ)+1
2 and β2(ℓ) = k(ℓ) − β1(ℓ) for k(ℓ) = ⌊− 1

2 +
√

1
4 + 2ℓ⌋.



Lognormal Field with given Covariance Length

Let a(x , ω) = exp (γ(x , ω)) with centered Gaussian random field γ with covariance

Covγ(x , z) := 1
100 exp

(
−ℓ−2∥x − z∥2

2
)
.

ℓ2 εγM̂
(γM) rmax(aPDE) res(aPDE) εaM (aPDE) rmax(aVMC) res(aVMC) εaM (aVMC)

10 1.59 · 10−7 21 1.62 · 10−4 4.10 · 10−7 9 4.97 · 10−1 6.59 · 10−3

5 9.30 · 10−7 21 1.99 · 10−4 1.68 · 10−6 7 5.51 · 10−1 3.01 · 10−3

1 5.79 · 10−5 38 1.31 · 10−4 8.04 · 10−6 8 4.87 · 10−1 1.05 · 10−2

0.5 3.27 · 10−4 52 2.10 · 10−4 2.69 · 10−5 7 3.09 · 10−1 1.35 · 10−2

0.1 8.57 · 10−3 114 5.28 · 10−4 3.21 · 10−5 13 1.30 · 100 6.17 · 10−2

Table 1: L-shaped domain with CG-1 FEM (3017 DoFs) for M = 20 and da = 10. Also γM̂ is computed for M̂ = 100.
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