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Optical metrology: the inverse problem

Problems in optical metrology often inverse problems

Results of experimental measurement y∗

Parameterized model f(p) of measurement process (e.g. using FEM)

Find model parameters p∗ that explain measurement results

Minimize χ2(p) =

N∑
i

(
y∗i − fi(p)

ηi

)2

→ Minimization algorithm
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The inverse problem: solving it

Requirements for minimization schemes

Can handle the discrete results of measurement and model

E.g. Levenberg-Marquardt

Uses available resources sparingly (forward model may be expensive)

E.g. methods that use surrogate models (Kriging, GPR, BO)
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Bayesian target vector optimization

Combining both aspects:
Bayesian target vector optimization12

Least-square minimization in a Bayesian optimization framework

✓ Responsible use of resources
✓ Direct use of each data channel

1Uhrenholt and Jensen, PMLR (2019)
2Plock, et al., Adv. Theory Simul. 5, 2200112 (2022)

Matthias Plock (ZIB) BTVO MathMet 2022 4 / 15



Bayesian Optimization, least-square problems, and a new approach



Bayesian optimization fundamentals

Sequential optimization methods

Use model observations to create
surrogate model (Gaussian process (GP)
regression)

GP completely specified by

Mean function m(p) (often just m0)
Covariance kernel function k(p,p′)
Model observations
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Bayesian optimization fundamentals

GP predicts f̂(p) ∼ N (µ(p), σ2(p)) for all
p ∈ X

Acquisition function uses µ(p) and σ2(p)

Finds useful points in parameter space to
achieve goal of optimization
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Least-squares using a conventional Bayesian optimization scheme
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The Bayesian target-vector optimization scheme
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Application of the method



Application of the method: the experimental dataset

GIXRF (Grazing Incidence XRay
Fluorescence)

Measured at PTB/BESSY

kin
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To detector
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208 discrete measurements with
uncertainties

Measured for angles θ = 75.13◦ to
θ = 89.48◦
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Application of the method: the forward model

toxide

cd

R

Si substrate

SiO2

Si3N4

Computational domain

tgroove
swa

h

tsub

Model created using FEM Maxwell Solver
(JCMsuite)

10 free parameters

7 geometrical
3 auxiliary
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Application of the method: Performance measurement

Comparing Bayesian Target Vector optimization method (BTVO)
against . . .

Levenberg-Marquardt (LM) least-squares (scipy implementation)
Conventional Bayesian optimization (BO) method

Determine mean and standard deviation of six optimization runs

Metric is distance to best reconstruction result pLSQE in terms of
Gaussian reconstruction uncertainties

d(p) =

√√√√ N∑
i

(
pi − pLSQE,i

ϵLSQE,i

)2

, ϵi from Jacobian at pLSQE
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Reconstruction results

BTVO LM BO
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reconstruct parameters

BTVO and LM reach distance of
less than 1 standard deviation

BTVO outperforms LM: faster
and closer to pLSQE
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Parameter uncertainty estimation using MCMC on a trained surrogate
model



MCMC with a trained multi output surrogate model

Markov Chain Monte Carlo (MCMC) often used to determine
parameter uncertainties and correlations

Fitting an error model to the data

Requires many samples of objective function

BTVO and BO automatically train surrogate model

Sampling of surrogate model cheaper than objective function

Use trained surrogate models as stand-in for objective function

→ Perform MCMC on trained surrogate model
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GIXRF MCMC analysis

Applied to GIXRF forward problem1

Reveal correlations between
parameters (also discussed in 2)

MLE and uncertainties confirm
optimization reconstruction results
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1Plock, et al., Adv. Theory Simul. 5, 2200112 (2022)
2Soltwisch et al., (2018) Nanoscale 10 6177
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Summary

Bayesian Target Vector optimization performs very well

Manages to outperform a traditional least-square algorithm for the
considered parameter reconstruction problem

Multi-output GP yields fast & inexpensive MCMC option
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Parameter uncertainty estimation, using MCMC on a trained surrogate
model



MCMC with a trained multi output surrogate model

Often used to determine parameter uncertainties and correlations

Fitting an error model to the data

Requires many samples of objective function

Use trained surrogate models as stand-in for objective function

Sampling of surrogate model cheaper than objective function

→ Perform MCMC on surrogate model
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The MCMC demonstration dataset (MGH17)
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Standard Reference Database

33 discrete data points and 5
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f(x,β) = β1 + β2e
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1https://www.itl.nist.gov/div898/strd/nls/data/mgh17.shtml
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MCMC for MGH17 (50000 obs. of model function / 32 walkers)
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MCMC for MGH17 (50000 obs. of surrogate model / 32 walkers)
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MCMC for MGH17 (side by side comparison)
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GP MCMC convergence
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GIXRF MCMC analysis

Apply to GIXRF forward problem
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