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Errors-in-Variables models in deep regression



What is Errors-in-Variables (EiV)?



Deep regression & EiV
Classical model (non-EiV)

𝑦 = 𝑓𝜃 𝑥 + 𝜀𝑦

Errors-in-Variables (EiV)

𝑦 = 𝑓𝜃 𝜁 + 𝜀𝑦

𝑥 = 𝜁 + 𝜀𝑥

(e.g. Gorp et al. 1998, Pavone 2018, Xie at al. 2020)

Our work: Bayesian Neural Networks → Uncertainty

Neural net 𝜀𝑦 ∼ 𝑁(0, 𝜎𝑦
2𝐼𝑛𝑦×𝑛𝑦)
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A glimpse on the mathematics



Recap on Bayesian NNs

Fix prior, e.g. 𝜋 𝜃 = 𝑁(0, 𝜆−1 𝐼𝑛𝜃×𝑛𝜃)

(Unfeasible) posterior given 𝐷 = 𝑥𝑖 , 𝑦𝑖 𝑖 = 1,… , 𝑁}

𝜋 𝜃 𝐷 ∝ 𝜋 𝜃 ⋅ 𝑝(𝐷|𝜃)

Approximate via feasible 𝑞𝜙 𝜃 ≈ 𝜋 𝜃 𝐷 (Variational Inference)



Recap on Bayesian NNs

Kullback-Leibler loss: 

𝐿 𝜙 = 𝐾𝐿 𝑞𝜙 𝜃 ||𝜋 𝜃 𝐷 ``=``     L2 Loss + regularization

Key result of Gal et al. (2016):

• Dropout gives naturally rise to some 𝑞𝜙 𝜃

• Minimizing 𝐿 𝜙 „equivalent“ to standard training under dropout

→ scalable way to do Variational Inference for NNs



Additional ingredients for EiV

Additional prior 𝜋 𝜁 = 𝑁 0, 𝜎𝜁
2𝐼𝑛𝜁×𝑛𝜁 (Uninformative: 𝜎𝜁 → ∞ )

Additional posterior for input

𝜋 𝜁 𝑥 = 𝑁 𝑥, 1 +
𝜎𝑥
2

𝜎𝜁
2

−1

𝜎𝑥
2

𝑞𝜙 𝜃 again based on Dropout

Kullback-Leibler loss

𝐿 𝜙 =෍

𝑖

∫ ⅆ𝜃𝑞𝜙 𝜃 ⋅ log ∫ ⅆ𝜁𝑖 𝜋 𝜁𝑖 𝑥𝑖 ⋅ 𝑝(𝑦𝑖|𝜁𝑖 , 𝜃) − 𝐷𝐾𝐿(𝑞𝜙(𝜃)||𝜋(𝜃))

„L2 Loss“ „Regularization“



Uncertainty

𝜃 ∼ 𝑞𝜙(𝜃)

non-EiV

EiV

𝜁 ∼ 𝜋(𝜁|𝑥)

𝑓𝜃(𝑥)

𝑓𝜃(𝜁)

𝑦 = 𝑓𝜃 𝑥 + 𝜀𝑦

𝑦 = 𝑓𝜃 𝜁 + 𝜀𝑦



Uncertainty
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non-EiV

EiV

𝜁 ∼ 𝜋(𝜁|𝑥)

𝑓𝜃(𝑥)

𝑓𝜃(𝜁)

𝑦 = 𝑓𝜃 𝑥 + 𝜀𝑦

𝑦 = 𝑓𝜃 𝜁 + 𝜀𝑦



Experiments



Root-mean-squared-error (RMSE)

RMSE similar for both,
EiV and non-EiV



Simulated models give deeper insight

Check for examples with known ground truth (i.e. simulated examples)

𝑔: 𝜁 ↦ 𝑔(𝜁) models ground truth

Generate training and testing data via

𝑥 = 𝜁 + 𝜀𝑥
𝑦 = 𝑔(𝜁) + 𝜀𝑦



Simulated examples

non-EiV
EiV



Simulated examples
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Simulated examples

Predictions closer to 𝑔(𝑥) than to 𝑔 𝜁

→ Error  
→ better covered EiV uncertainty

non-EiV
EiV



This behavior is systematic

Study on various simulated datasets

The behavior

𝑝𝑟𝑒ⅆ𝑖𝑐𝑡𝑖𝑜𝑛 − 𝑔 𝑥 < 𝑝𝑟𝑒ⅆ𝑖𝑐𝑡𝑖𝑜𝑛 − 𝑔 𝜁

seems to be a typical behavior in problems with
input noise.
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Example: wine quality dataset

Similar error, but higher uncertainty



Coverage by uncertainty

Coverage substantially
increased when
considering EiV
instead of non-EiV



Coverage: examples with known ground truth

Coverage of EiV model
matches far better
theoretical expectations



Conclusion

• EiV allows to account for the input uncertainty

• We propose an approach based on variational inference

• Our approach has the same prediction performance but increased
uncertainties

• For examples with known ground truth: 
Increased uncertainty matches better theoretical expectations



Talk based on the article

Aleatoric uncertainty for Errors-in-Variables models in deep regression. 
Jörg Martin and Clemens Elster. To appear in Neural Processing Letters.

There is also a (simplified) preprint available (different title!)

Errors-in-Variables for deep learning: rethinking aleatoric uncertainty. Jörg Martin 
and Clemens Elster. arXiv preprint arXiv:2105.09095, 2021.
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Thank you for your attention!



Additional material



Dropout and variational inference



M.C.-Loss fucntion from article





How to solve this

Illustration (old one)


