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Compressed sensing

Goal: signal reconstruction given randomly subsampled data
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Compressed sensing

Compressed sensing reconstruction
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Compressed sensing

Compressed sensing reconstruction

Fourier domain

Only few non-zero Fourier coefficients
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Compressed sensing

Compressed sensing reconstruction

Fourier domain

Signal is sparse in Fourier domain

Only few non-zero Fourier coefficients
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Compressed sensing: Math

Sparse recovery from an underdetermined linear system

min
𝜇

‖𝜇‖0 subject to 𝑦 = 𝑉𝜇

𝑦 subsampled data

𝑉 known sensing matrix

𝜇 sought sparse vector

‖𝜇‖0 number of non-zero elements
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Compressed sensing: Math

Sparse recovery from an underdetermined linear system

min
𝜇

‖𝜇‖0 subject to 𝑦 = 𝑉𝜇

Solution via combinatorial search usually not tractable 

➢ Convex relaxation : min
𝜇

‖𝜇‖1 subject to 𝑦 = 𝑉𝜇

➢ Alternative: Greedy methods

Donoho, D. L. (2006). Compressed sensing. IEEE Transactions on information theory, 52(4), 1289-1306.
Candes, E. J. (2008). The restricted isometry property and its implications for compressed sensing. Comptes rendus
mathematique, 346(9-10), 589-592.
Eldar, Y. C., & Kutyniok, G. (Eds.). (2012). Compressed sensing: theory and applications. Cambridge University Press.

𝑦 subsampled data

𝑉 known sensing matrix

𝜇 sought sparse vector

‖𝜇‖0 number of non-zero elements
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Joint regression and compressed sensing

regression 

component

sparse 

component

+ =

+ =

signal domain

Fourier domain

Not sparse
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Joint regression and compressed sensing

regression 

component

sparse 

component

+ =

+ =

signal domain

Fourier domain

possibly non-sparse
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Joint regression and compressed sensing

𝑦 = 𝑉μ + 𝑋𝜃

regression 

component

sparse 

component

𝑦 subsampled data

𝑉 known sensing matrix

𝜇 sought sparse vector

𝑋 known design matrix

𝜃 sought weights (few)

Model
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Joint regression and compressed sensing

Two step procedure

1) Evaluation of sparse signal

• Determine matrix 𝑃 so that 𝑃𝑋 = 0

• ෤𝑦 = 𝑃𝑦 = 𝑃𝑉𝜇 represents standard compressed sensing task

• Apply greedy method to obtain sparse representation

𝑦 = 𝑉μ + 𝑋𝜃

regression 

component

sparse 

component

𝑦 subsampled data

𝑉 known sensing matrix

𝜇 sought sparse vector

𝑋 known design matrix

𝜃 sought weights (few)

Model
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Joint regression and compressed sensing

2) Regression

• Reduced regression task

• Identifiable since  rank([ ෨𝑉, 𝑋]) = 𝑝 + 𝑟

➔ Estimated weights 𝜃 and coefficients ෤𝜇

𝑦 = ෨𝑉 ෤𝜇 + 𝑋𝜃

𝑝 number of weights 𝜃
𝑟 number non-zero elements of 𝜇

Two step procedure

𝑦 = 𝑉μ + 𝑋𝜃

regression 

component

sparse 

component

𝑦 subsampled data

𝑉 known sensing matrix

𝜇 sought sparse vector

𝑋 known design matrix

𝜃 sought weights (few)

Model

෨𝑉 : matrix containing only 
columns of 𝑉 where 𝜇 ≠ 0
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➢ Combines infrared (IR) spectroscopy 

with scanning probe microscopy.

➢ Enables hyperspectral imaging at 

nanometer spatial resolution 

Nano-Fourier-transform infrared spectroscopy (nano-FTIR)
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➢ Combines infrared (IR) spectroscopy 

with scanning probe microscopy.

➢ Enables hyperspectral imaging at 

nanometer spatial resolution 

Nano-Fourier-transform infrared spectroscopy (nano-FTIR)

Nano-FTIR can be used to determine chemical mappings

➢ Spatial distribution of concentration of substances contained in the sample

➢ Obtained by solving a regression task using known spectral characteristics 

Huth F, Govyadinov A, Amarie S, Nuansing W, Keilmann F and Hillenbrand R (2012) Nano-FTIR absorption spectroscopy of molecular 
fingerprints at 20 nm spatial resolution Nano Lett. 12 3973–8
Amarie S, Zaslansky P, Kajihara Y, Griesshaber E, Schmahl W W and Keilmann F 2012 Nano-FTIR chemical mapping of minerals in 
biological materials Beilstein J. Nanotechnol. 3 312–23
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Nano FTIR chemical mapping

Challenges

➢ Nano-FTIR is scanning based ➔ long measurement times (hours)

➢ Data may contain signal contributions of further, unknown substances
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Nano FTIR chemical mapping

Challenges

➢ Nano-FTIR is scanning based ➔ long measurement times (hours)

➢ Data may contain signal contributions of further, unknown substances

Joint regression and compressed sensing approach 

➢ Subsampling enables reduced measurement times

➢ Additional signal contribution is assumed to be sparse

➢ Spatial regression includes Gaussian Markov random field regularization
Rue, H., & Held, L. (2005). Gaussian Markov random fields: theory and applications. Chapman and Hall/CRC. 
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Nano FTIR reconstruction

➢ Real nano-FTIR measurements*) superimposed by simulated chemical mappings

➢ Simulated components and sparse signal exhibit spectral overlap

➢ Data taken at a subsampling rate of 20%.

*) Kästner, B., Schmähling, F., Hornemann, A., Ulrich, G., Hoehl, A., Kruskopf, M., Pierz, K., Raschke, M. B., Wübbeler, G. and Elster, C. (2018) 
Compressed sensing FTIR nano-spectroscopy and nanoimaging. Optics Express, vol. 26, no. 14, pp. 18115-18124. 

Sparse component Reconstruction
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Chemical mapping estimates

Simulated mappings

Joint regression and 

compressed sensing

Naïve regression,

sparse signal treated

as error
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Summary

➢ Development of a joint regression and compressed sensing approach

➢ Subsampling enables reduced measurement times

➢ Unknown signal contributions modelled non-parametrically

➢ Functionality demonstrated using augmented nano-FTIR data

Wübbeler, G., Marschall, M., Rühl, E., Kästner, B., & Elster, C. (2022). Compressive nano-FTIR chemical mapping. 
Measurement Science and Technology, 33(3), 035402. 


